Some asymptotic results for transient random walks

被引:54
作者
Bertoin, J [1 ]
Doney, RA [1 ]
机构
[1] UNIV MANCHESTER,DEPT MATH,STAT LAB,MANCHESTER M13 9PL,LANCS,ENGLAND
关键词
transient random walks;
D O I
10.2307/1427918
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a real-valued random walk S which drifts to -infinity and is such that E(exp theta S-1)<infinity for some theta>0, but for which Cramer's condition fails. We investigate the asymptotic tail behaviour of the distributions of the all time maximum, the upwards and downwards first passage times and the last passage times, As an application, we obtain new limit theorems for certain conditional laws.
引用
收藏
页码:207 / 226
页数:20
相关论文
共 24 条
[1]  
[Anonymous], 1972, INTRO PROBABILITY TH
[2]   ON THE LOCAL BEHAVIOR OF LADDER HEIGHT DISTRIBUTIONS [J].
BERTOIN, J ;
DONEY, RA .
JOURNAL OF APPLIED PROBABILITY, 1994, 31 (03) :816-821
[3]  
Bertoin J., 1994, ANN PROBAB, V22, P2152
[4]  
Bingham N., 1989, REGULAR VARIATION
[5]  
Borovkov AA, 1976, STOCHASTIC PROCESSES
[6]  
BROWN LD, 1986, STAT DECISION THEORY, V9
[7]   DEGENERACY PROPERTIES OF SUBCRITICAL BRANCHING PROCESSES [J].
CHOVER, J ;
NEY, P ;
WAINGER, S .
ANNALS OF PROBABILITY, 1973, 1 (04) :663-673
[8]   FUNCTIONS OF PROBABILITY MEASURES [J].
CHOVER, J ;
NEY, P ;
WAINGER, S .
JOURNAL D ANALYSE MATHEMATIQUE, 1973, 26 :255-302
[10]   LAST EXIT TIMES FOR RANDOM-WALKS [J].
DONEY, RA .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1989, 31 (02) :321-331