Configuration controllability of simple mechanical control systems

被引:12
作者
Lewis, AD [1 ]
Murray, RM
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
[2] CALTECH, Pasadena, CA 91125 USA
关键词
mechanics; Riemannian geometry; controllability; symmetric product;
D O I
10.1137/S0036144599351065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a definition of "configuration controllability" for mechanical systems whose Lagrangian is kinetic energy with respect to a Riemannian metric minus potential energy, A computable test for this new version of controllability is derived. This condition involves an object that we call the symmetric product. Of particular interest is a definition of "equilibrium controllability" for which we are able to derive computable sufficient conditions. Examples illustrate the theory.
引用
收藏
页码:555 / 574
页数:20
相关论文
共 30 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]  
Bloch A.M., 1992, P 32 IEEE C DEC CONT, P1
[3]  
Bloch AM, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P1066, DOI 10.1109/CDC.1995.480232
[4]   CONTROL AND STABILIZATION OF NONHOLONOMIC DYNAMIC-SYSTEMS [J].
BLOCH, AM ;
REYHANOGLU, M ;
MCCLAMROCH, NH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (11) :1746-1757
[5]  
Brockett R. W., 1983, DIFFERENTIAL GEOMETR, P181
[6]  
BROCKETT RW, 1977, GEOMETRIC CONTROL TH, P1
[7]   Tracking for fully actuated mechanical systems: a geometric framework [J].
Bullo, F ;
Murray, RM .
AUTOMATICA, 1999, 35 (01) :17-34
[8]  
BULLO F, IN PRESS IEEE T AUTO
[9]  
BULLO F, UNPUB P IFAC 99 INT
[10]  
FLIESS M, 1992, CR ACAD SCI I-MATH, V315, P619