Global well-posedness of weak solutions and a regularity criterion of strong solutions for an epitaxial growth model

被引:1
作者
Fan, Jishan [1 ]
Samet, Bessem [2 ]
Zhou, Yong [3 ]
机构
[1] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Jiangsu, Peoples R China
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
关键词
Weak solution; Strong solution; Epitaxy; Thin film; THIN-FILM EPITAXY; CRYSTAL-SURFACES; STEP MOTION;
D O I
10.1016/j.aml.2017.12.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove global well-posedness of weak solutions for an epitaxial growth model with L-2 initial data in any dimension d. Then, we establish a regularity criterion of strong solutions with dimension d >= 3. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8 / 11
页数:4
相关论文
共 50 条
[31]   A BLOW-UP CRITERION OF STRONG SOLUTIONS TO THE QUANTUM HYDRODYNAMIC MODEL [J].
王光武 ;
郭柏灵 .
Acta Mathematica Scientia, 2020, 40 (03) :795-804
[32]   A Blow-Up Criterion of Strong Solutions to the Quantum Hydrodynamic Model [J].
Wang, Guangwu ;
Guo, Boling .
ACTA MATHEMATICA SCIENTIA, 2020, 40 (03) :795-804
[33]   A Blow-Up Criterion of Strong Solutions to the Quantum Hydrodynamic Model [J].
Wang Guangwu ;
Guo Boling .
Acta Mathematica Scientia, 2020, 40 :795-804
[34]   Global Weak Solutions to a Generic Two-Fluid Model [J].
D. Bresch ;
B. Desjardins ;
J. -M. Ghidaglia ;
E. Grenier .
Archive for Rational Mechanics and Analysis, 2010, 196 :599-629
[36]   Global existence of weak solutions to a diffuse interface model for magnetic fluids [J].
Kalousek, Martin ;
Mitra, Sourav ;
Schloemerkemper, Anja .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 59
[37]   Global existence for weak solutions of the Cauchy problem in a model of radiation hydrodynamics [J].
Ducomet, Bernard ;
Necasova, Sarka .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) :464-482
[38]   Regularity of weak solutions to the model venttsel problem for linear divergence elliptic operators in Campanato spaces [J].
Arkhipova A.A. ;
Lukina A.A. .
Journal of Mathematical Sciences, 2013, 195 (5) :609-621
[39]   Global existence of the finite energy weak solutions to a nematic liquid crystals model [J].
Xu, Jiankai ;
Tan, Zhong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (08) :929-938
[40]   Global existence and uniqueness of weak solutions in critical spaces for a mathematical model in superfluidity [J].
Fan, Jishan ;
Ni, Guoxi .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (08) :1673-1681