Global well-posedness of weak solutions and a regularity criterion of strong solutions for an epitaxial growth model

被引:1
作者
Fan, Jishan [1 ]
Samet, Bessem [2 ]
Zhou, Yong [3 ]
机构
[1] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Jiangsu, Peoples R China
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
关键词
Weak solution; Strong solution; Epitaxy; Thin film; THIN-FILM EPITAXY; CRYSTAL-SURFACES; STEP MOTION;
D O I
10.1016/j.aml.2017.12.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove global well-posedness of weak solutions for an epitaxial growth model with L-2 initial data in any dimension d. Then, we establish a regularity criterion of strong solutions with dimension d >= 3. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8 / 11
页数:4
相关论文
共 50 条
[21]   On Regularity of Weak Solutions to a Generalized Voigt Model of Viscoelasticity [J].
Zvyagin, V. G. ;
Orlov, V. P. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (11) :1872-1888
[22]   On Regularity of Weak Solutions to a Generalized Voigt Model of Viscoelasticity [J].
V. G. Zvyagin ;
V. P. Orlov .
Computational Mathematics and Mathematical Physics, 2020, 60 :1872-1888
[23]   Extension criterion on regularity for weak solutions to the 3D MHD equations [J].
Gala, Sadek .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (12) :1496-1503
[24]   Regularity Criterion for Weak Solutions to the Navier-Stokes Equations in Terms of the Gradient of the Pressure [J].
Jishan Fan ;
Tohru Ozawa .
Journal of Inequalities and Applications, 2008
[25]   ON THE LONGTIME BEHAVIOR OF SOLUTIONS TO A MODEL FOR EPITAXIAL GROWTH [J].
Grasselli, Maurizio ;
Mola, Gianluca ;
Yagi, Atsushi .
OSAKA JOURNAL OF MATHEMATICS, 2011, 48 (04) :987-1004
[26]   GLOBAL WELL-POSEDNESS FOR THE THREE-DIMENSIONAL GENERALIZED TROPICAL CLIMATE MODEL WITH DAMPING [J].
Mao, Rongyan ;
Liu, Hui ;
Xin, Jie .
MATHEMATICAL FOUNDATIONS OF COMPUTING, 2025, 8 (02) :154-163
[27]   Existence of global weak solutions to the kinetic Peterlin model [J].
Gwiazda, P. ;
Lukacova-Medvidova, M. ;
Mizerova, H. ;
Swierczewska-Gwiazda, A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 44 :465-478
[28]   Global regularity of weak solutions for steady motions of electrorheological fluids in 3D smooth domain [J].
Sin, Cholmin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (01) :752-776
[29]   Global Well-Posedness of an Inviscid Three-Dimensional Pseudo-Hasegawa-Mima Model [J].
Chongsheng Cao ;
Aseel Farhat ;
Edriss S. Titi .
Communications in Mathematical Physics, 2013, 319 :195-229
[30]   A BLOW-UP CRITERION OF STRONG SOLUTIONS TO THE QUANTUM HYDRODYNAMIC MODEL [J].
王光武 ;
郭柏灵 .
Acta Mathematica Scientia, 2020, 40 (03) :795-804