L-functions of certain exponential sums over finite fields II

被引:3
作者
Lin, Xin [1 ]
Chen, Chao [2 ]
机构
[1] Shanghai Maritime Univ, Dept Math, Shanghai 201306, Peoples R China
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
Exponential sums; L-function; Laurent polynomials; Newton polygon; Hodge polygon; Decomposition theory; Weight computation;
D O I
10.1016/j.jnt.2022.03.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we compute the q-adic slopes of the L-functions of an important class of exponential sums arising from analytic number theory. Our main tools include Adolphson-Sperber's work on toric exponential sums and Wan's decomposition theorems. This paper is a generalization of our previous paper. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:198 / 220
页数:23
相关论文
共 12 条
[1]   EXPONENTIAL-SUMS AND NEWTON POLYHEDRA - COHOMOLOGY AND ESTIMATES [J].
ADOLPHSON, A ;
SPERBER, S .
ANNALS OF MATHEMATICS, 1989, 130 (02) :367-406
[2]   L-functions of certain exponential sums over finite fields [J].
Chen, Chao ;
Lin, Xin .
MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (02) :1851-1871
[3]  
Deligne P., 1980, Sci. Publ. Math, V52, P137
[4]  
Dwork B., 1962, PUBL MATH-PARIS, V12, P5, DOI [10.1007/BF02684275, DOI 10.1007/BF02684275]
[5]   INCOMPLETE KLOOSTERMAN SUMS AND A DIVISOR PROBLEM [J].
FRIEDLANDER, JB ;
IWANIEC, H ;
BIRCH, BJ ;
BOMBIERI, E .
ANNALS OF MATHEMATICS, 1985, 121 (02) :319-350
[6]  
Grothendieck A, 1966, S MINAIRE BOURBAKI A, P41
[7]   THE DIVISOR FUNCTION D3(N) IN ARITHMETIC PROGRESSIONS [J].
HEATHBROWN, DR .
ACTA ARITHMETICA, 1986, 47 (01) :29-56
[8]  
KATZ NM, 1987, J REINE ANGEW MATH, V377, P12
[9]  
Koblitz Neal., 1984, P ADIC NUMBERS P ADI, V58
[10]  
Wan D., 2004, ASIAN J MATH, V8, P427, DOI DOI 10.4310/AJM.2004.v8.n3.a4