Quantitative evaluation of temporal partial coherence using 3D Fourier transforms of through-focus TEM images

被引:7
作者
Kimoto, Koji [1 ,2 ]
Sawada, Hidetaka [2 ,3 ]
Sasaki, Takeo [2 ,3 ]
Sato, Yuta [2 ,4 ]
Nagai, Takuro [1 ]
Ohwada, Megumi [1 ]
Suenaga, Kazu [2 ,4 ]
Ishizuka, Kazuo [1 ,5 ]
机构
[1] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan
[2] Japan Sci & Technol Agcy, Res Accelerat Program, Chiyoda Ku, Tokyo 1020075, Japan
[3] JEOL Ltd, Akishima, Tokyo 1968558, Japan
[4] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan
[5] HREM Res Inc, Saitama 3550055, Japan
关键词
High-resolution transmission electron microscopy; Spherical aberration corrector; Information limit; TRANSMISSION ELECTRON-MICROSCOPY; FIELD-EMISSION GUN; CHROMATIC ABERRATION; RESOLUTION; MONOCHROMATOR; SPECTROSCOPY; ILLUMINATION; PERFORMANCE; INFORMATION; SERIES;
D O I
10.1016/j.ultramic.2013.06.008
中图分类号
TH742 [显微镜];
学科分类号
摘要
We evaluate the temporal partial coherence of transmission electron microscopy (TEM) using the three-dimensional (3D) Fourier transform (FT) of through-focus images. Young's fringe method often indicates the unexpected high-frequency information due to non-linear imaging terms. We have already used the 3D FT of axial (non-tilted) through-focus images to reduce the effect of non-linear terms on the linear imaging term, and demonstrated the improvement of monochromated lower-voltage TOM performance [Kimoto el. al., Ultramicroscopy 121 (2012) 31-39]. Here we apply the 3D FT method with intentionally tilted incidence to normalize various factors associated with a TEM specimen and an imaging device. The temporal partial coherence of two microscopes operated at 30,60 and 80 kV is evaluated. Our method is applicable to such cases where the non-linear terms become more significant in lower acceleration voltage or aberration corrected high spatial resolution TEM. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 93
页数:8
相关论文
共 22 条
[1]   Quantification of the Information Limit of Transmission Electron Microscopes [J].
Barthel, J. ;
Thust, A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (20)
[2]  
Dowell W.C.T., 1963, OPTIK, V20, P535
[3]   Electron microscopy image enhanced [J].
Haider, M ;
Uhlemann, S ;
Schwan, E ;
Rose, H ;
Kabius, B ;
Urban, K .
NATURE, 1998, 392 (6678) :768-769
[4]   Information Transfer in a TEM Corrected for Spherical and Chromatic Aberration [J].
Haider, M. ;
Hartel, P. ;
Mueller, H. ;
Uhlemann, S. ;
Zach, J. .
MICROSCOPY AND MICROANALYSIS, 2010, 16 (04) :393-408
[5]   CONTRAST TRANSFER OF CRYSTAL IMAGES IN TEM [J].
ISHIZUKA, K .
ULTRAMICROSCOPY, 1980, 5 (01) :55-65
[6]   Transmission electron microscopy at 20 kV for imaging and spectroscopy [J].
Kaiser, U. ;
Biskupek, J. ;
Meyer, J. C. ;
Leschner, J. ;
Lechner, L. ;
Rose, H. ;
Stoeger-Pollach, M. ;
Khlobystov, A. N. ;
Hartel, P. ;
Mueller, H. ;
Haider, M. ;
Eyhusen, S. ;
Benner, G. .
ULTRAMICROSCOPY, 2011, 111 (08) :1239-1246
[7]   0.23 eV energy resolution obtained using a cold field-emission gun and a streak imaging technique [J].
Kimoto, K ;
Ishizuka, K ;
Asaka, T ;
Nagai, T ;
Matsui, Y .
MICRON, 2005, 36 (05) :465-469
[8]   Advantages of a monochromator for bandgap measurements using electron energy-loss spectroscopy [J].
Kimoto, K ;
Kothleitner, G ;
Grogger, W ;
Matsui, Y ;
Hofer, F .
MICRON, 2005, 36 (02) :185-189
[9]   Software techniques for EELS to realize about 0.3 eV energy resolution using 300 kV FEG-TEM [J].
Kimoto, K ;
Matsui, Y .
JOURNAL OF MICROSCOPY-OXFORD, 2002, 208 (03) :224-228
[10]   Assessment of lower-voltage TEM performance using 3D Fourier transform of through-focus series [J].
Kimoto, Koji ;
Kurashima, Keiji ;
Nagai, Takuro ;
Ohwada, Megumi ;
Ishizuka, Kazuo .
ULTRAMICROSCOPY, 2012, 121 :31-37