Exact and Parameterized Algorithms for Restricted Subset Feedback Vertex Set in Chordal Graphs

被引:1
作者
Bai, Tian [1 ]
Xiao, Mingyu [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
来源
THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2022 | 2022年 / 13571卷
基金
中国国家自然科学基金;
关键词
Subset feedback vertex set; Chordal graphs; Exact exponential algorithms; Parameterized algorithms;
D O I
10.1007/978-3-031-20350-3_20
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Restricted Subset Feedback Vertex Set problem (R-SFVS) takes a graph G = (V, E), a terminal set T subset of V, and an integer k as the input. The task is to determine whether there exists a subset S subset of V \ T of at most k vertices, after deleting which no terminal in T is contained in a cycle in the remaining graph. R-SFVS is NP-complete even when the input graph is restricted to chordal graphs. In this paper, we show that R-SFVS in chordal graphs can be solved in time O(1.1550 vertical bar V vertical bar), significantly improving all the previous results. As a by-product, we prove that the Maximum Independent Set problem parameterized by the edge clique cover number is fixed-parameter tractable. Furthermore, by using a simple reduction from R-SFVS to Vertex Cover, we obtain a 1.2738(k)vertical bar V vertical bar(O(1))-time parameterized algorithm and an O(k(2))-kernel for R-SFVS in chordal graphs.
引用
收藏
页码:249 / 261
页数:13
相关论文
共 36 条
[21]   A Randomized Polynomial Kernel for Subset Feedback Vertex Set [J].
Eva-Maria C. Hols ;
Stefan Kratsch .
Theory of Computing Systems, 2018, 62 :63-92
[22]   A Randomized Polynomial Kernel for Subset Feedback Vertex Set [J].
Hols, Eva-Maria C. ;
Kratsch, Stefan .
THEORY OF COMPUTING SYSTEMS, 2018, 62 (01) :63-92
[23]   A Randomized Polynomial Kernel for Subset Feedback Vertex Set [J].
Hols, Eva-Maria C. ;
Kratsch, Stefan .
33RD SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2016), 2016, 47
[24]   Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable [J].
Chitnis, Rajesh ;
Cygan, Marek ;
Hajiaghayi, Mohammataghi ;
Marx, Daniel .
ACM TRANSACTIONS ON ALGORITHMS, 2015, 11 (04)
[25]   FPT algorithms for Connected Feedback Vertex Set [J].
Neeldhara Misra ;
Geevarghese Philip ;
Venkatesh Raman ;
Saket Saurabh ;
Somnath Sikdar .
Journal of Combinatorial Optimization, 2012, 24 :131-146
[26]   FPT algorithms for Connected Feedback Vertex Set [J].
Misra, Neeldhara ;
Philip, Geevarghese ;
Raman, Venkatesh ;
Saurabh, Saket ;
Sikdar, Somnath .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (02) :131-146
[27]   An improved exact algorithm for undirected feedback vertex set [J].
Xiao, Mingyu ;
Nagamochi, Hiroshi .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 30 (02) :214-241
[28]   An improved exact algorithm for undirected feedback vertex set [J].
Mingyu Xiao ;
Hiroshi Nagamochi .
Journal of Combinatorial Optimization, 2015, 30 :214-241
[29]   SUBSET FEEDBACK VERTEX SET IS FIXED-PARAMETER TRACTABLE [J].
Cygan, Marek ;
Pilipczuk, Marcin ;
Pilipczuk, Michal ;
Wojtaszczyk, Jakub Onufry .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) :290-309
[30]   Brief Announcement: Distributed Minimum Vertex Coloring and Maximum Independent Set in Chordal Graphs [J].
Konrad, Christian ;
Zamaraev, Viktor .
PODC'18: PROCEEDINGS OF THE 2018 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2018, :159-161