Log-concavity of the partition function

被引:80
作者
DeSalvo, Stephen [1 ]
Pak, Igor [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Integer partition; Partition function; Log-concave sequence; Asymptotic analysis; Error estimates; ASYMPTOTIC FORMULAS; COMBINATORIAL PROOF; UNIMODAL SEQUENCES; SERIES; NUMBERS; STACKS;
D O I
10.1007/s11139-014-9599-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the partition function is log-concave for all . We then extend the results to resolve two related conjectures by Chen and one by Sun. The proofs are based on Lehmer's estimates on the remainders of the Hardy-Ramanujan and the Rademacher series for p(n).
引用
收藏
页码:61 / 73
页数:13
相关论文
共 25 条
[1]   COMBINATORIAL PROOF OF A PARTITION FUNCTION LIMIT [J].
ANDREWS, GE .
AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (03) :276-&
[2]  
[Anonymous], 2010, FPSAC 2010 C TALK SL
[3]  
[Anonymous], 1998, CAMBRIDGE MATH LIB
[4]  
Bessenrodt C., Maximal multiplicative properties of partitions
[5]  
Bona M., 2004, ELECTRON J COMB, V11, P4
[6]  
Brenti F., 1994, Contemporary Mathematics, V178, P71
[7]   Asymptotic formulas for stacks and unimodal sequences [J].
Bringmann, Kathrin ;
Mahlburg, Karl .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 126 :194-215
[8]  
Chen W.Y.C., 2014, ARXIV14070177
[9]   On an elementary proof of some asymptotic formulas in the theory of partitions [J].
Erdos, P .
ANNALS OF MATHEMATICS, 1942, 43 :437-450
[10]  
Gupta H., 1939, TABLES PARTITIONS