A remark about wave equations on the extreme Reissner-Nordstrom black hole exterior

被引:50
作者
Bizon, Piotr [1 ,2 ]
Friedrich, Helmut [2 ]
机构
[1] Jagiellonian Univ, Inst Phys, Krakow, Poland
[2] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Golm, Germany
关键词
COLLAPSE;
D O I
10.1088/0264-9381/30/6/065001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider a massless scalar field propagating on the exterior of the extreme Reissner-Nordstrom black hole. Using a discrete conformal symmetry of this spacetime, we draw a one-to-one relationship between the behavior of the field near the future horizon and near future null infinity. In particular, we show that the polynomial growth of the second and higher transversal derivatives along the horizon, recently found by Aretakis, reflects well-known facts about the retarded time asymptotics at null infinity. We also observe that the analogous relationship holds true for an axially symmetric massless scalar field propagating on the extreme Kerr-Newman background.
引用
收藏
页数:6
相关论文
共 19 条
[1]  
Aretakis S, 2012, ARXIV12066598
[2]   Stability and Instability of Extreme Reissner-Nordstrom Black Hole Spacetimes for Linear Scalar Perturbations II [J].
Aretakis, Stefanos .
ANNALES HENRI POINCARE, 2011, 12 (08) :1491-1538
[3]   Stability and Instability of Extreme Reissner-Nordstrom Black Hole Spacetimes for Linear Scalar Perturbations I [J].
Aretakis, Stefanos .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (01) :17-63
[4]  
Bicak J., 1972, General Relativity and Gravitation, V3, P331, DOI 10.1007/BF00759172
[5]  
Bizon P, YANG MILLS FIE UNPUB
[6]   Late-time tails of a self-gravitating massless scalar field, revisited [J].
Bizon, Piotr ;
Chmaj, Tadeusz ;
Rostworowski, Andrzej .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (17)
[7]   Late-time tails in the Reissner-Nordstrom spacetime revisited [J].
Blaksley, Carl J. ;
Burko, Lior M. .
PHYSICAL REVIEW D, 2007, 76 (10)
[8]   CONFORMAL-INVARIANCE UNDER SPATIAL INVERSION OF EXTREME REISSNER-NORDSTROM BLACK-HOLES [J].
COUCH, WE ;
TORRENCE, RJ .
GENERAL RELATIVITY AND GRAVITATION, 1984, 16 (08) :789-792
[9]   A proof of Price's law for the collapse of a self-gravitating scalar field [J].
Dafermos, M ;
Rodnianski, I .
INVENTIONES MATHEMATICAE, 2005, 162 (02) :381-457
[10]   CONSERVED QUANTITIES IN EINSTEIN-MAXWELL THEORY [J].
EXTON, AR ;
NEWMAN, ET ;
PENROSE, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (09) :1566-+