Antenna design for RF Ion Heating of anisotropic magnetized plasma

被引:0
作者
Torrisi, G. [1 ]
Mauro, G. S. [1 ,2 ]
Mascali, D. [1 ]
Galata, A. [3 ]
Celona, L. [1 ]
Sorbello, G. [1 ,4 ]
Gammino, S. [1 ]
机构
[1] Ist Nazl Fis Nucl, Lab Nazl Sud INFN LNS, Via S Sofia 62, I-95123 Catania, Italy
[2] Univ Mediterranea Reggio Calabria Salita Melissar, Dipartimento Ingn Informaz Infrastrutture & Energ, I-89124 Reggio Di Calabria, RC, Italy
[3] lst Nazl Fis Nucl, Lab Nazl Legnaro INFN LNL, Viale Univ 2, I-35020 Padua, Italy
[4] Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
来源
2020 14TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP 2020) | 2020年
关键词
FEM simulations; antennas; Ion cyclotron resonance heating; anisotropic plasma; WAVES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present and validate a 3D full-wave numerical model for solving the wave propagation in the anisotropic magnetoplasma of Electron Cyclotron Resonance (ECR) ion sources, with the aim to analyze and design radiofrequency antennas which could produce Ion Cyclotron Resonance Heating (ICRH). Our tool is based on the coupling between COMSOL FEM solution of Maxwell equations and the MATLAB-computed non-homogeneous plasma dielectric tensor. This approach allows the evaluation of RF absorbed power by the plasma as well as the antenna input impedance which represents a crucial parameter for the design of the feeding and matching circuits usually adopted in ICRH setup. A numerical study has been performed by varying antenna geometry and plasma parameters: results are reported and cross-validated against other models.
引用
收藏
页数:4
相关论文
共 18 条
[2]   ICRF heating and plasma acceleration with an open magnetic field for the advanced space thruster [J].
Ando, A. ;
Inutake, M. ;
Hattori, K. ;
Shikabata, M. ;
Kasashima, Y. .
FUSION SCIENCE AND TECHNOLOGY, 2007, 51 (2T) :72-74
[3]   Helicon antenna radiation patterns in a high-density hydrogen linear plasma device [J].
Caneses, J. F. ;
Blackwell, B. D. ;
Piotrowicz, P. .
PHYSICS OF PLASMAS, 2017, 24 (11)
[4]  
Geller R., 1996, ELECT CYCLOTRON RESO
[5]   PLASMA PRODUCTION AND HEATING IN A TANDEM MIRROR CENTRAL CELL BY RADIO-FREQUENCY WAVES IN THE ION-CYCLOTRON FREQUENCY-RANGE [J].
GOLOVATO, SN ;
BRAU, K ;
CASEY, J ;
COLEMAN, J ;
GERVER, MJ ;
GUSS, W ;
HALLOCK, G ;
HORNE, S ;
IRBY, J ;
KUMAZAWA, R ;
KESNER, J ;
LANE, B ;
MACHUZAK, J ;
MORAN, T ;
MYER, R ;
POST, RS ;
SEVILLANO, E ;
SMITH, DK ;
SULLIVAN, JD ;
TORTI, R ;
WANG, L ;
YASAKA, Y ;
YAO, XZ ;
ZIELINSKI, J .
PHYSICS OF FLUIDS, 1988, 31 (12) :3744-3753
[6]  
Ilin A. V., 2005, 43 AIAA AER SCI SIM
[7]   Ion heating in the HELIX helicon plasma source [J].
Kline, JL ;
Scime, EE ;
Keiter, PA ;
Balkey, MM ;
Boivin, RF .
PHYSICS OF PLASMAS, 1999, 6 (12) :4767-4772
[8]   Ion acceleration and heating by kinetic Alfven waves associated with magnetic reconnection [J].
Liang, Ji ;
Lin, Yu ;
Johnson, Jay R. ;
Wang, Zheng-Xiong ;
Wang, Xueyi .
PHYSICS OF PLASMAS, 2017, 24 (10)
[9]   A double-layer based model of ion confinement in electron cyclotron resonance ion source [J].
Mascali, D. ;
Neri, L. ;
Celona, L. ;
Castro, G. ;
Torrisi, G. ;
Gammino, S. ;
Sorbello, G. ;
Ciavola, G. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (02)
[10]   A comparative study of radiofrequency antennas for Helicon plasma sources [J].
Melazzi, D. ;
Lancellotti, V. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2015, 24 (02)