ACM based ROI Extraction for Pedestrian Detection with Partial Occlusion Handling

被引:4
作者
Viswanath, Viswajith P. [1 ]
Ragesh, N. K. [2 ]
Nair, Madhu S. [1 ]
机构
[1] Univ Kerala, Dept Comp Sci, Thiruvananthapuram 695581, Kerala, India
[2] Network Syst & Technol P Ltd, Transportat Business Unit, Thiruvananthapuram 695581, Kerala, India
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES, ICICT 2014 | 2015年 / 46卷
关键词
Pedestrian detection; region of interest; histogram of oriented gradients; active contour model; local binary pattern;
D O I
10.1016/j.procs.2015.01.049
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Pedestrian detection in video surveillance systems is an integral part of Advanced Driver Assistance Systems (ADAS). In this paper, a new method for efficient pedestrian detection is proposed. The proposed method uses ACM (Active Contour Model) for efficiently locating pedestrian position in each video frame and thereby speeding up the detection time. This method uses a combination of HOG (Histogram of Oriented Gradients) and LBP (Local Binary Patterns) as features for training a two level linear SVM (Support Vector Machine). The proposed method handles partial occlusion using a two-level SVM classifier and eliminates multiple detection using Non Maximum Suppression (NMS) algorithm. The performance analysis is done using INRIA Person dataset and CVC Partial Occlusion dataset; and it is found that the proposed method gives promising results in terms of detection accuracy and detection speed. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 13 条
[1]  
Bo Li, 2012, 2012 9th IEEE International Conference on Networking, Sensing and Control (ICNSC), P393, DOI 10.1109/ICNSC.2012.6204951
[2]   Active contours without edges [J].
Chan, TF ;
Vese, LA .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (02) :266-277
[3]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[4]   A Bayesian, exemplar-based approach to hierarchical shape matching [J].
Gavrila, Dariu M. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (08) :1408-1421
[5]   Survey of Pedestrian Detection for Advanced Driver Assistance Systems [J].
Geronimo, David ;
Lopez, Antonio M. ;
Sappa, Angel D. ;
Graf, Thorsten .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (07) :1239-1258
[6]  
Jin Nie, 2010, Proceedings 2010 International Conference on Optoelectronics and Image Processing (ICOIP 2010), P160, DOI 10.1109/ICOIP.2010.153
[7]   Shape-Based Human Detection and Segmentation via Hierarchical Part-Template Matching [J].
Lin, Zhe ;
Davis, Larry S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (04) :604-618
[8]   Occlusion Handling via Random Subspace Classifiers for Human Detection [J].
Marin, Javier ;
Vazquez, David ;
Lopez, Antonio M. ;
Amores, Jaume ;
Kuncheva, Ludmila I. .
IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (03) :342-354
[9]  
OJALA T, 1994, INT C PATT RECOG, P582, DOI 10.1109/ICPR.1994.576366
[10]   Toward Real-Time Pedestrian Detection Based on a Deformable Template Model [J].
Pedersoli, Marco ;
Gonzalez, Jordi ;
Hu, Xu ;
Roca, Xavier .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2014, 15 (01) :355-364