Some fractional integral formulas for the Mittag-Leffler type function with four parameters

被引:29
作者
Agarwal, Praveen [1 ]
Nieto, Juan J. [2 ,3 ]
机构
[1] Anand Int Coll Engn, Dept Math, Jaipur 303012, Rajasthan, India
[2] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
[3] King Abdulaziz Univ, Fac Sci, Jeddah 21589, Saudi Arabia
关键词
Marichev-Saigo-Maeda type fractional integral operators; Mittag-Leffler type function with four parameters; Generalized Wright function; OPERATORS;
D O I
10.1515/math-2015-0051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present some results from the theory of fractional integration operators (of Marichev-Saigo-Maeda type) involving the Mittag-Leffler type function with four parameters E-zeta,gamma(mu,nu)[z] which has been recently introduced by Garg et al. Some interesting special cases are given to fractional integration operators involving some Special functions.
引用
收藏
页码:537 / 546
页数:10
相关论文
共 60 条
[31]   Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus [J].
Kiryakova, VS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :241-259
[32]  
Machado J. A. T., 2010, FRACT CALC APPL ANAL, V13, P329
[33]   Recent history of fractional calculus [J].
Machado, J. Tenreiro ;
Kiryakova, Virginia ;
Mainardi, Francesco .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) :1140-1153
[34]  
Mainardi F., 2000, Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models, DOI DOI 10.1142/P926
[35]  
Marichev O. I., 1974, Izvestiya Akademii Nauk BSSR, Seriya Fiziko-Matematicheskikh Nauk, V1, P128
[36]  
Mathai A.M., 1978, H FUNCTION APPL STAT
[37]  
Mittag-Leffler G, 1903, CR HEBD ACAD SCI, V137, P554
[38]  
Olver F.W.J., 2010, NIST handbook of mathematical functions
[39]  
Podlubny Igor, 1998, Fractional differential equationsM
[40]  
Prabhakar T. R. A., 1971, YOKOHAMA MATH J, V19, P7