Metric Subregularity for Subsmooth Generalized Constraint Equations in Banach Spaces

被引:2
作者
He Qinghai [1 ]
Yang Ji [2 ]
Zhang Binbin [3 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
[2] Aviat Univ AF, Basic Flight Training Base, Changchun 130022, Jilin, Peoples R China
[3] Kunming Univ Sci & Technol, Sch Sci, Kunming 650500, Yunnan, Peoples R China
关键词
ERROR-BOUNDS; REGULARITY; SETS;
D O I
10.1155/2012/185249
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to metric subregularity of a kind of generalized constraint equations. In particular, in terms of coderivatives and normal cones, we provide some necessary and sufficient conditions for subsmooth generalized constraint equations to be metrically subregular and strongly metrically subregular in general Banach spaces and Asplund spaces, respectively.
引用
收藏
页数:16
相关论文
共 20 条
[1]  
[Anonymous], 2002, NONCON OPTIM ITS APP
[2]   Subsmooth sets: Functional characterizations and related concepts [J].
Aussel, D ;
Daniilidis, A ;
Thibault, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (04) :1275-1301
[3]  
Clarke F.H, 1983, OPTIMIZATION NONSMOO
[4]  
Clarke FH, 1995, J Conv Anal, V2, P117
[5]   On the calmness of a class of multifunctions [J].
Henrion, R ;
Jourani, A ;
Outrata, J .
SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (02) :603-618
[6]   Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities [J].
Li, W .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (04) :966-978
[7]   Global error bounds for convex multifunctions and applications [J].
Li, W ;
Singer, I .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (02) :443-462
[9]  
Mordukhovich B. S., 2006, VARIATIONAL ANAL GEN, V2
[10]  
Mordukhovich B. S., 2006, Grundlehren der mathematischen Wissenschaften, V330