A nonpercolation problem for the stationary Navier-Stokes equations

被引:1
作者
Dubinskii, Yu. A. [1 ]
机构
[1] Tech Univ, Moscow Power Engn Inst, Moscow 111250, Russia
关键词
POISSON EQUATIONS; SYSTEM;
D O I
10.1134/S1064562415040237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The solvability of a nonpercolation boundary problem for the stationary Navier-Stokes equations is proved. The key points of the proof are analogues of the Friedrichs inequality and the de Rham theorem adequate for nonpercolation conditions.
引用
收藏
页码:476 / 479
页数:4
相关论文
共 5 条
[1]  
DUBINSKII YA, 2006, P STEKLOV I MATH, V255, P127
[2]   Some coercive problems for the system of Poisson equations [J].
Dubinskii, Yu. A. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2013, 20 (04) :402-412
[3]   On some boundary value problems for a system of Poisson equations in a three-dimensional domain [J].
Dubinskii, Yu. A. .
DIFFERENTIAL EQUATIONS, 2013, 49 (05) :583-587
[4]  
Dubinskii Yu. A., 2014, VESTN MOSK ENERG I, P94
[5]  
Temam R., 1977, Theory and Numerical Analysis, Studies in Mathematics and its Applications, V2