Insights into the Effect of Magnetic Confinement on the Performance of Magnetic Nanocomposites in Magnetic Hyperthermia and Magnetic Resonance Imaging

被引:2
作者
Scialla, Stefania [1 ,2 ]
Genicio, Nuria [1 ]
Brito, Beatriz [1 ,3 ,4 ]
Florek-Wojciechowska, Malgorzata [5 ]
Stasiuk, Graeme J. [3 ]
Kruk, Danuta [5 ]
Banobre-Lopez, Manuel [1 ]
Gallo, Juan [1 ]
机构
[1] Int Iberian Nanotechnol Lab, Adv Magnet Theranost Nanostruct Lab, P-4715330 Braga, Portugal
[2] Natl Res Council CNR, Inst Polymers Composites & Biomat IPCB, Viale JF Kennedy 54,Mostra Oltremare Pad 20, I-80125 Naples, Italy
[3] Kings Coll London, Sch Biomed Engn & Imaging Sci, Dept Imaging Chem & Biol, London SE1 7EH, England
[4] Univ Hull, Fac Hlth Sci, Sch Life Sci, Kingston Upon Hull HU6 7RX, N Humberside, England
[5] Univ Warmia & Mazury, Fac Food Sci, Dept Phys & Biophys, PL-10719 Olsztyn, Poland
基金
英国工程与自然科学研究理事会;
关键词
magnetic nanocomposites; magnetic particle interactions; magnetic resonance imaging; magnetic hyperthermia; theranostics; SOLID LIPID NANOPARTICLES; IRON-OXIDE NANOPARTICLES; DIPOLAR INTERACTIONS; CONTRAST AGENTS; NANOEMULSIONS; SIZE; OPTIMIZATION; SURFACTANTS; STABILITY; CARRIERS;
D O I
10.1021/acsanm.2c03537
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The combination of superparamagnetic iron oxide nanoparticles (SPIONs) and lipid matrices enables the integration of imaging, drug delivery, and therapy functionalities into smart theranostic nanocomposites. SPION confinement creates new interactions primarily among the embedded SPIONs and then between the nanocomposites and the surroundings. Understanding the parameters that rule these interactions in real interacting (nano)systems still represents a challenge, making it difficult to predict or even explain the final (magnetic) behavior of such systems. Herein, a systematic study focused on the performance of a magnetic nanocomposite as a magnetic resonance imaging (MRI) contrast agent and magnetic hyperthermia (MH) effector is presented. The effect of stabilizing agents and magnetic loading on the final physicochemical and, more importantly, functional properties (i.e., blocking temperature, specific absorption rate, relaxivity) was studied in detail.
引用
收藏
页码:16462 / 16474
页数:13
相关论文
共 50 条
  • [21] Recent Advances in Modulating Magnetic Nanoparticles for Improving Magnetic Hyperthermia Performance
    Jiang Xiao-Li
    Wang Yan-Yun
    Wang Ying-Ze
    Yu Jing
    Liu Xiao-Li
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2019, 46 (03) : 248 - 255
  • [22] Correlating Magnetic Hyperthermia and Magnetic Resonance Imaging Contrast Performance of Cubic Iron Oxide Nanoparticles with Crystal Structural Integrity
    Shingte, Sameer D.
    Phakatkar, Abhijit H.
    McKiernan, Eoin
    Nigoghossian, Karina
    Ferguson, Steven
    Shahbazian-Yassar, Reza
    Brougham, Dermot F.
    CHEMISTRY OF MATERIALS, 2022, 34 (24) : 10801 - 10810
  • [23] Hydrophobically modified sodium alginate conjugated plasmonic magnetic nanocomposites for drug delivery & magnetic resonance imaging
    Arora, Varun
    Sood, Ankur
    Kumari, Sadhana
    Kumaran, S. Senthil
    Jain, Tapan K.
    MATERIALS TODAY COMMUNICATIONS, 2020, 25
  • [24] Magnetic polymeric nanoassemblies for magnetic resonance imaging-combined cancer theranostics
    Gan, Shenglong
    Lin, Yisheng
    Feng, Yancong
    Shui, Lingling
    Li, Hao
    Zhou, Guofu
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2018, 13 : 4263 - 4281
  • [25] Magnetic Colloidal Particles in Combinatorial Thin-Film Gradients for Magnetic Resonance Imaging and Hyperthermia
    Khizar, Sumera
    Ahmad, Nasir Mahmood
    Saleem, Hassan
    Hamayun, Muhammad Asif
    Manzoor, Sadia
    Lebaz, Noureddine
    Elaissari, Abdelhamid
    ADVANCES IN POLYMER TECHNOLOGY, 2020, 2020
  • [26] Cryogenic Preamplifiers for Magnetic Resonance Imaging
    Johansen, Daniel H.
    Sanchez-Heredia, Juan D.
    Petersen, Jan R.
    Johansen, Tom K.
    Zhurbenko, Vitaliy
    Ardenkjaer-Larsen, Jan H.
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2018, 12 (01) : 202 - 210
  • [27] Magnetic Nanoparticles in Magnetic Resonance Imaging and Diagnostics
    Christine Rümenapp
    Bernhard Gleich
    Axel Haase
    Pharmaceutical Research, 2012, 29 : 1165 - 1179
  • [28] Magnetic Particle Imaging-Guided Thermal Simulations for Magnetic Particle Hyperthermia
    Carlton, Hayden
    Arepally, Nageshwar
    Healy, Sean
    Sharma, Anirudh
    Ptashnik, Sarah
    Schickel, Maureen
    Newgren, Matt
    Goodwill, Patrick
    Attaluri, Anilchandra
    Ivkov, Robert
    NANOMATERIALS, 2024, 14 (12)
  • [29] Magnetic Nanoparticle-Based High-Performance Positive and Negative Magnetic Resonance Imaging Contrast Agents
    Tegafaw, Tirusew
    Liu, Shuwen
    Ahmad, Mohammad Yaseen
    Saidi, Abdullah Khamis Ali Al
    Zhao, Dejun
    Liu, Ying
    Nam, Sung-Wook
    Chang, Yongmin
    Lee, Gang Ho
    PHARMACEUTICS, 2023, 15 (06)
  • [30] Labeling of Cancer Cells with Magnetic Nanoparticles for Magnetic Resonance Imaging
    Weis, Christian
    Blank, Fabian
    West, Adrian
    Black, Gregory
    Woodward, Robert C.
    Carroll, Matthew R. J.
    Mainka, Astrid
    Kartmann, Rene
    Brandl, Andreas
    Bruns, Heiko
    Hallam, Elizabeth
    Shaw, Jeremy
    Murphy, John
    Teoh, Wey Yang
    Aifantis, Katerina E.
    Amal, Rose
    House, Mike
    St Pierre, Tim
    Fabry, Ben
    MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (05) : 1896 - 1905