Insights into the Effect of Magnetic Confinement on the Performance of Magnetic Nanocomposites in Magnetic Hyperthermia and Magnetic Resonance Imaging

被引:2
|
作者
Scialla, Stefania [1 ,2 ]
Genicio, Nuria [1 ]
Brito, Beatriz [1 ,3 ,4 ]
Florek-Wojciechowska, Malgorzata [5 ]
Stasiuk, Graeme J. [3 ]
Kruk, Danuta [5 ]
Banobre-Lopez, Manuel [1 ]
Gallo, Juan [1 ]
机构
[1] Int Iberian Nanotechnol Lab, Adv Magnet Theranost Nanostruct Lab, P-4715330 Braga, Portugal
[2] Natl Res Council CNR, Inst Polymers Composites & Biomat IPCB, Viale JF Kennedy 54,Mostra Oltremare Pad 20, I-80125 Naples, Italy
[3] Kings Coll London, Sch Biomed Engn & Imaging Sci, Dept Imaging Chem & Biol, London SE1 7EH, England
[4] Univ Hull, Fac Hlth Sci, Sch Life Sci, Kingston Upon Hull HU6 7RX, N Humberside, England
[5] Univ Warmia & Mazury, Fac Food Sci, Dept Phys & Biophys, PL-10719 Olsztyn, Poland
基金
英国工程与自然科学研究理事会;
关键词
magnetic nanocomposites; magnetic particle interactions; magnetic resonance imaging; magnetic hyperthermia; theranostics; SOLID LIPID NANOPARTICLES; IRON-OXIDE NANOPARTICLES; DIPOLAR INTERACTIONS; CONTRAST AGENTS; NANOEMULSIONS; SIZE; OPTIMIZATION; SURFACTANTS; STABILITY; CARRIERS;
D O I
10.1021/acsanm.2c03537
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The combination of superparamagnetic iron oxide nanoparticles (SPIONs) and lipid matrices enables the integration of imaging, drug delivery, and therapy functionalities into smart theranostic nanocomposites. SPION confinement creates new interactions primarily among the embedded SPIONs and then between the nanocomposites and the surroundings. Understanding the parameters that rule these interactions in real interacting (nano)systems still represents a challenge, making it difficult to predict or even explain the final (magnetic) behavior of such systems. Herein, a systematic study focused on the performance of a magnetic nanocomposite as a magnetic resonance imaging (MRI) contrast agent and magnetic hyperthermia (MH) effector is presented. The effect of stabilizing agents and magnetic loading on the final physicochemical and, more importantly, functional properties (i.e., blocking temperature, specific absorption rate, relaxivity) was studied in detail.
引用
收藏
页码:16462 / 16474
页数:13
相关论文
共 50 条
  • [1] Innovative magnetic nanoparticle platform for magnetic resonance imaging and magnetic fluid hyperthermia applications
    Liu, Xiao Li
    Fan, Hai Ming
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2014, 4 : 38 - 46
  • [2] Efficient Approach to Rank Performance of Magnetic Colloids for Magnetic Particle Imaging and Magnetic Particle Hyperthermia
    Carlton, Hayden
    Salimi, Marzieh
    Arepally, Nageshwar
    Bentolila, Gabriela
    Sharma, Anirudh
    Bibic, Adnan
    Newgren, Matt
    Goodwill, Patrick
    Attaluri, Anilchandra
    Korangath, Preethi
    Bulte, Jeff W. M.
    Ivkov, Robert
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (02)
  • [3] Sub-Micrometer Magnetic Nanocomposites: Insights into the Effect of Magnetic Nanoparticles Interactions on the Optimization of SAR and MRI Performance
    Grillo, Renato
    Gallo, Juan
    Stroppa, Daniel G.
    Carbo-Argibay, Enrique
    Lima, Renata
    Fraceto, Leonardo F.
    Banobre-Lopez, Manuel
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (39) : 25777 - 25787
  • [4] Synthesis of Multifunctional Magnetic NanoFlakes for Magnetic Resonance Imaging, Hyperthermia, and Targeting
    Cervadoro, Antonio
    Cho, Minjung
    Key, Jaehong
    Cooper, Christy
    Stigliano, Cinzia
    Aryal, Santosh
    Brazdeikis, Audrius
    Leary, James F.
    Decuzzi, Paolo
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (15) : 12939 - 12946
  • [5] Metal Nanoparticles for Simultaneous Use in AC Magnetic Field Hyperthermia and Magnetic Resonance Imaging
    Solak, Kubra
    Atis, Mustafa
    Kasapoglu, Ahmet Emre
    Karaman, Adem
    Mavi, Ahmet
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2025, 113 (01)
  • [6] Magnetic Nanoparticles in Magnetic Resonance Imaging and Diagnostics
    Ruemenapp, Christine
    Gleich, Bernhard
    Haase, Axel
    PHARMACEUTICAL RESEARCH, 2012, 29 (05) : 1165 - 1179
  • [7] Clinical magnetic hyperthermia requires integrated magnetic particle imaging
    Healy, Sean
    Bakuzis, Andris F.
    Goodwill, Patrick W.
    Attaluri, Anilchandra
    Bulte, Jeff W. M.
    Ivkov, Robert
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2022, 14 (03)
  • [8] Magnetic silica nanocomposites for magnetic hyperthermia applications
    Ansari, Legha
    Malaekeh-Nikouei, Bizhan
    INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2017, 33 (03) : 354 - 363
  • [9] Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia
    Umut, Evrim
    Coskun, Mustafa
    Pineider, Francesco
    Berti, Debora
    Gungunes, Hakan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 550 : 199 - 209
  • [10] Magnetically responsive polycaprolactone nanocarriers for application in the biomedical field: magnetic hyperthermia, magnetic resonance imaging, and magnetic drug delivery
    Szczech, Marta
    Orsi, Davide
    Lopuszynska, Natalia
    Cristofolini, Luigi
    Jasinski, Krzysztof
    Weglarz, Wladyslaw P.
    Albertini, Franca
    Kereiche, Sami
    Szczepanowicz, Krzysztof
    RSC ADVANCES, 2020, 10 (71) : 43607 - 43618