Physical Layer based Message Authentication with Secure Channel Codes

被引:43
作者
Chen, Dajiang [1 ]
Zhang, Ning [2 ]
Cheng, Nan [3 ]
Zhang, Kuan [4 ]
Qin, Zhiguang [1 ]
Shen, Xuemin [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 611731, Sichuan, Peoples R China
[2] Texas A&M Univ, Dept Comp Sci, Corpus Christi, TX 78412 USA
[3] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[4] Univ Nebraska, Dept Elect & Comp Engn, Omaha, NE 68182 USA
基金
加拿大自然科学与工程研究理事会; 中国博士后科学基金;
关键词
Physical layer security; message authentication; wiretap channel; polar codes; LFSR-based hash functions; strong secure channel coding; UNAUTHENTICATED PUBLIC CHANNELS; SECRET-KEY AGREEMENT; KEYLESS AUTHENTICATION; WIRETAP CHANNELS; PART II; NETWORKS; GENERATION; CAPACITY; PRIVACY;
D O I
10.1109/TDSC.2018.2846258
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate physical (PHY) layer message authentication to combat adversaries with infinite computational capacity. Specifically, a PHY-layer authentication framework over a wiretap channel (W-1, W-2) is proposed to achieve informationtheoretic security with the same key. We develop a theorem to reveal the requirements/conditions for the authentication framework to be information-theoretic secure for authenticating a polynomial number of messages in terms of n. Based on this theorem, we design an authentication protocol that can guarantee the security requirements, and prove its authentication rate can approach infinity when n goes to infinity. Furthermore, we design and implement a feasible and efficient message authentication protocol over binary symmetric wiretap channel (BSWC) by using Linear Feedback Shifting Registerbased (LFSR-based) hash functions and strong secure polar code. Through extensive simulations, it is demonstrated that the proposed protocol can achieve high authentication rate, with low time cost and authentication error rate.
引用
收藏
页码:1079 / 1093
页数:15
相关论文
共 50 条
[1]   Common randomness in information theory and cryptography - Part II: CR capacity [J].
Ahlswede, R ;
Csiszar, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) :225-240
[2]  
[Anonymous], 1979, J COMPUT SYST SCI
[3]  
[Anonymous], 2003, IEEE T INFORM THEORY, DOI DOI 10.1109/TIT.2003.809560
[4]  
[Anonymous], 2014, IEEE T INF FOREN SEC, DOI DOI 10.1109/TIFS.2014.2320634
[5]  
[Anonymous], 2015, IEEE INT SYMP INFO
[6]  
[Anonymous], 2015, IEEE T INF FOREN SEC, DOI DOI 10.1109/TIFS.2015.2392565
[7]  
[Anonymous], 2017, IEEE INT CONF MOB, DOI DOI 10.1109/MASS.2017.70
[8]   Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels [J].
Arikan, Erdal .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (07) :3051-3073
[9]   Physical Layer Authentication over MIMO Fading Wiretap Channels [J].
Baracca, Paolo ;
Laurenti, Nicola ;
Tomasin, Stefano .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2012, 11 (07) :2564-2573
[10]  
CARTER JL, 1979, J COMPUT SYST SCI, V18, P143, DOI 10.1016/0022-0000(79)90044-8