Bounds for the spectral mean value of central values of L-functions

被引:2
作者
Lu, Qing [1 ]
机构
[1] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
关键词
Central value of L-functions; Subconvexity bound; Rankin-Selberg; Kuznetsov trace formula; Voronoi formula; AUTOMORPHIC L-FUNCTIONS; SELBERG L-FUNCTIONS; HEEGNER POINTS; POSITIVITY; GL(3); GL(2);
D O I
10.1016/j.jnt.2011.12.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of the known subconvexity bound of spectral mean values of some GL(2) L-functions at s = 1/2 coming from the Rankin-Selberg L-functions of a GL(3) Eisenstein series and a GL(2) or Gamma(0)(q) Maass form, as well as a new result in the twisted case. This is inspired by X. Li's result on The bounds for GL(3) x GL(2) L-functions of Hecke-Maass forms. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1016 / 1037
页数:22
相关论文
共 29 条
[1]  
Apostol T., 1976, UNDERGRADUATE TEXTS
[2]   The cubic moment of central values of automorphic L-functions [J].
Conrey, JB ;
Iwaniec, H .
ANNALS OF MATHEMATICS, 2000, 151 (03) :1175-1216
[3]  
Goldfeld D., 2006, Cambridge Studies in Advanced Mathematics, V99
[4]  
GOLDFELD D, 2008, INT MATH RES NOT IMR
[5]  
Goldfeld D, 2006, INT MATH RES NOTICES, V2006
[6]   On the positivity of the central critical values of automorphic L-functions for GL(2) [J].
Guo, JD .
DUKE MATHEMATICAL JOURNAL, 1996, 83 (01) :157-190
[7]   The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points.: II [J].
Harcos, G ;
Michel, P .
INVENTIONES MATHEMATICAE, 2006, 163 (03) :581-655
[8]  
Ivi A., 2001, J. Theor. Nombres Bordeaux, V13, P453, DOI 10.5802/jtnb.333
[9]  
Iwaniec H, 2000, GEOM FUNCT ANAL, P705
[10]  
IWANIEC H, 1992, J REINE ANGEW MATH, V428, P139