Lee-extremal self-dual codes over F2 + uF2 of lengths 23 and 24

被引:3
作者
Kim, Hyun Jin [1 ]
机构
[1] Ewha Womans Univ, Inst Math Sci, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
Automorphism; Self-dual code; Extremal code; ODD PRIME-ORDER; II CODES; CONSTRUCTION; AUTOMORPHISM; F-2+UF(2);
D O I
10.1016/j.ffa.2014.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We completely classify the Lee-extremal self-dual codes over F-2 + uF2 of lengths 23 and 24 with a nontrivial automorphism of odd order. In particular, we show that there is no Lee-extremal self-dual code of length 23 with a nontrivial automorphism of odd order, there are 41 inequivalent Lee-extremal Type I codes of length 24 with a nontrivial automorphism of odd order and there exists one Lee-extremal Type II code of length 24 with a nontrivial automorphism of odd order, up to equivalence. Moreover, Lee-extremal Type II codes of length 24 have an automorphism of order 3. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:18 / 33
页数:16
相关论文
共 12 条
[1]   Type II codes over F2+uF2 and applications to Hermitian modular forms [J].
Bannai, E ;
Harada, M ;
Ibukiyama, T ;
Munemasa, A ;
Oura, M .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2003, 73 :13-42
[2]   Classification of binary self-dual [48,24,10] codes with an automorphism of odd prime order [J].
Bouyuklieva, Stefka ;
Yankov, Nikolay ;
Kim, Jon-Lark .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (06) :1104-1113
[3]   A LINEAR CONSTRUCTION FOR CERTAIN KERDOCK AND PREPARATA CODES [J].
CALDERBANK, AR ;
HAMMONS, AR ;
KUMAR, PV ;
SLOANE, NJA ;
SOLE, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :218-222
[4]  
Cannon J., 1994, An Introduction to Magma
[5]   Type IV self-dual codes over rings [J].
Dougherty, ST ;
Gaborit, P ;
Harada, M ;
Munemasa, A ;
Solé, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) :2345-2360
[6]   Type II codes over F2+uF2 [J].
Dougherty, ST ;
Gaborit, P ;
Harada, M ;
Solé, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (01) :32-45
[7]   The extended quadratic residue code is the only (48,24,12) self-dual doubly-even code [J].
Houghten, SK ;
Lam, CWH ;
Thiel, LH ;
Parker, JA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (01) :53-59
[8]   On the decomposition of self-dual codes over F2+uF2 with an automorphism of odd prime order [J].
Huffman, W. Cary .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (03) :681-712
[9]   Self-dual codes over F2 + uF2 with an automorphism of odd order [J].
Huffman, W. Cary .
FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (03) :277-293
[10]   Hermitian self-dual codes over F22m + uF22m [J].
Kim, Hyun Jin ;
Lee, Yoonjin .
FINITE FIELDS AND THEIR APPLICATIONS, 2014, 25 :106-131