Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries

被引:419
作者
Kim, Ki-Tae [1 ]
Ali, Ghulam [2 ]
Chung, Kung Yoon [2 ]
Yoon, Chong Seung [3 ]
Yashiro, Hitoshi [4 ]
Sun, Yang-Kook [5 ,6 ]
Lu, Jun [7 ]
Amine, Khalil [6 ,7 ]
Myung, Seung-Taek [1 ]
机构
[1] Sejong Univ, Dept Nano Engn, Seoul 143747, South Korea
[2] Korea Inst Sci & Technol, Ctr Energy Convergence, Seoul 136791, South Korea
[3] Hanyang Univ, Dept Mat Sci & Engn, Seoul 133791, South Korea
[4] Iwate Univ, Dept Chem Engn, Morioka, Iwate 0208551, Japan
[5] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
[6] King Abdulaziz Univ, Dept Chem, Fac Sci, Jeddah 22254, Saudi Arabia
[7] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
基金
新加坡国家研究基金会;
关键词
Natase TiO2; nanorods; carbon coating; intercalation; anode; sodium battery; NANOSTRUCTURED TIO2; ION INTERCALATION; RUTILE; TIN; NANOCOMPOSITES; LI;
D O I
10.1021/nl402747x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For the first time, we report the electrochemical activity of anatase TiO2 nanorods in a Na cell. The anatase TiO2 nanorods were synthesized by a hydrothermal method, and their surfaces were coated by carbon to improve the electric conductivity through carbonization of pitch at 700 degrees C for 2 h in Ar flow. The resulting structure does not change before and after the carbon coating, as confirmed by X-ray diffraction (XRD). Transmission electron microscopic images confirm the presence of a carbon coating on the anatase TiO2 nanorods. In cell tests, anodes of bare and carbon-coated anatase TiO2 nanorods exhibit stable cycling performance and attain a capacity of about 172 and 193 mAh g(-1) on the first charge; respectively, in the voltage range of 3-0 V. With the help of the conductive carbon layers, the carbon-coated anatase TiO2 delivers more capacity at high rates, 104 mAh g(-1) at the 10 C-rate (3.3 A g(-1)), 82 mAh g(-1) at the 30 C-rate (10 A g(-1)), and 53 mAh g(-1) at the 100 C-rate (33 A g(-1)). By contrast, the anode of bare anatase TiO2 nanorods delivers only about 38 mAh g(-1) at the 10 C-rate (3.3 A g(-1)). The excellent cyclability and high-rate capability are the result of a Na+ insertion and extraction reaction into the host structure coupled with Ti4+/3+ redox reaction, as revealed by X-ray absorption spectroscopy.
引用
收藏
页码:416 / 422
页数:7
相关论文
共 27 条
  • [1] Lithium-ion intercalation into TiO2-B nanowires
    Armstrong, AR
    Armstrong, G
    Canales, J
    García, R
    Bruce, PG
    [J]. ADVANCED MATERIALS, 2005, 17 (07) : 862 - +
  • [2] Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature
    Baudrin, E.
    Cassaignon, S.
    Koesch, M.
    Jolivet, J. -P.
    Dupont, L.
    Tarascon, J. -M.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (02) : 337 - 342
  • [3] Synthesis, structure, and electrochemical Li-ion intercalation properties of Li2Ti3O7 with Na2Ti3O7-type layered structure
    Chiba, Kazuki
    Kijima, Norihito
    Takahashi, Yasuhiko
    Idemoto, Yasushi
    Akimoto, Junji
    [J]. SOLID STATE IONICS, 2008, 178 (33-34) : 1725 - 1730
  • [4] Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties
    Dambournet, Damien
    Belharouak, Ilias
    Amine, Khalil
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (03) : 1173 - 1179
  • [5] Tin and graphite based nanocomposites: Potential anode for sodium ion batteries
    Datta, Moni Kanchan
    Epur, Rigved
    Saha, Partha
    Kadakia, Karan
    Park, Sung Kyoo
    Kuma, Prashant N.
    [J]. JOURNAL OF POWER SOURCES, 2013, 225 : 316 - 322
  • [6] High lithium electroactivity of nanometer-sized rutile TiO2
    Hu, Yong-Sheng
    Kienle, Lorenz
    Guo, Yu- Guo
    Maier, Joachim
    [J]. ADVANCED MATERIALS, 2006, 18 (11) : 1421 - +
  • [7] Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries
    Huang, J. P.
    Yuan, D. D.
    Zhang, H. Z.
    Cao, Y. L.
    Li, G. R.
    Yang, H. X.
    Gao, X. P.
    [J]. RSC ADVANCES, 2013, 3 (31): : 12593 - 12597
  • [8] Lithium storage in nanostructured TiO2 made by hydrothermal growth
    Kavan, L
    Kalbác, M
    Zukalová, M
    Exnar, I
    Lorenzen, V
    Nesper, R
    Graetzel, M
    [J]. CHEMISTRY OF MATERIALS, 2004, 16 (03) : 477 - 485
  • [9] Electrochemical and photoelectrochemical investigation of single-crystal anatase
    Kavan, L
    Gratzel, M
    Gilbert, SE
    Klemenz, C
    Scheel, HJ
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (28) : 6716 - 6723
  • [10] Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries
    Komaba, Shinichi
    Murata, Wataru
    Ishikawa, Toru
    Yabuuchi, Naoaki
    Ozeki, Tomoaki
    Nakayama, Tetsuri
    Ogata, Atsushi
    Gotoh, Kazuma
    Fujiwara, Kazuya
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (20) : 3859 - 3867