Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries

被引:420
作者
Kim, Ki-Tae [1 ]
Ali, Ghulam [2 ]
Chung, Kung Yoon [2 ]
Yoon, Chong Seung [3 ]
Yashiro, Hitoshi [4 ]
Sun, Yang-Kook [5 ,6 ]
Lu, Jun [7 ]
Amine, Khalil [6 ,7 ]
Myung, Seung-Taek [1 ]
机构
[1] Sejong Univ, Dept Nano Engn, Seoul 143747, South Korea
[2] Korea Inst Sci & Technol, Ctr Energy Convergence, Seoul 136791, South Korea
[3] Hanyang Univ, Dept Mat Sci & Engn, Seoul 133791, South Korea
[4] Iwate Univ, Dept Chem Engn, Morioka, Iwate 0208551, Japan
[5] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
[6] King Abdulaziz Univ, Dept Chem, Fac Sci, Jeddah 22254, Saudi Arabia
[7] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
基金
新加坡国家研究基金会;
关键词
Natase TiO2; nanorods; carbon coating; intercalation; anode; sodium battery; NANOSTRUCTURED TIO2; ION INTERCALATION; RUTILE; TIN; NANOCOMPOSITES; LI;
D O I
10.1021/nl402747x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For the first time, we report the electrochemical activity of anatase TiO2 nanorods in a Na cell. The anatase TiO2 nanorods were synthesized by a hydrothermal method, and their surfaces were coated by carbon to improve the electric conductivity through carbonization of pitch at 700 degrees C for 2 h in Ar flow. The resulting structure does not change before and after the carbon coating, as confirmed by X-ray diffraction (XRD). Transmission electron microscopic images confirm the presence of a carbon coating on the anatase TiO2 nanorods. In cell tests, anodes of bare and carbon-coated anatase TiO2 nanorods exhibit stable cycling performance and attain a capacity of about 172 and 193 mAh g(-1) on the first charge; respectively, in the voltage range of 3-0 V. With the help of the conductive carbon layers, the carbon-coated anatase TiO2 delivers more capacity at high rates, 104 mAh g(-1) at the 10 C-rate (3.3 A g(-1)), 82 mAh g(-1) at the 30 C-rate (10 A g(-1)), and 53 mAh g(-1) at the 100 C-rate (33 A g(-1)). By contrast, the anode of bare anatase TiO2 nanorods delivers only about 38 mAh g(-1) at the 10 C-rate (3.3 A g(-1)). The excellent cyclability and high-rate capability are the result of a Na+ insertion and extraction reaction into the host structure coupled with Ti4+/3+ redox reaction, as revealed by X-ray absorption spectroscopy.
引用
收藏
页码:416 / 422
页数:7
相关论文
共 27 条
[1]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[2]   Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature [J].
Baudrin, E. ;
Cassaignon, S. ;
Koesch, M. ;
Jolivet, J. -P. ;
Dupont, L. ;
Tarascon, J. -M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (02) :337-342
[3]   Synthesis, structure, and electrochemical Li-ion intercalation properties of Li2Ti3O7 with Na2Ti3O7-type layered structure [J].
Chiba, Kazuki ;
Kijima, Norihito ;
Takahashi, Yasuhiko ;
Idemoto, Yasushi ;
Akimoto, Junji .
SOLID STATE IONICS, 2008, 178 (33-34) :1725-1730
[4]   Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties [J].
Dambournet, Damien ;
Belharouak, Ilias ;
Amine, Khalil .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :1173-1179
[5]   Tin and graphite based nanocomposites: Potential anode for sodium ion batteries [J].
Datta, Moni Kanchan ;
Epur, Rigved ;
Saha, Partha ;
Kadakia, Karan ;
Park, Sung Kyoo ;
Kuma, Prashant N. .
JOURNAL OF POWER SOURCES, 2013, 225 :316-322
[6]   High lithium electroactivity of nanometer-sized rutile TiO2 [J].
Hu, Yong-Sheng ;
Kienle, Lorenz ;
Guo, Yu- Guo ;
Maier, Joachim .
ADVANCED MATERIALS, 2006, 18 (11) :1421-+
[7]   Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries [J].
Huang, J. P. ;
Yuan, D. D. ;
Zhang, H. Z. ;
Cao, Y. L. ;
Li, G. R. ;
Yang, H. X. ;
Gao, X. P. .
RSC ADVANCES, 2013, 3 (31) :12593-12597
[8]   Lithium storage in nanostructured TiO2 made by hydrothermal growth [J].
Kavan, L ;
Kalbác, M ;
Zukalová, M ;
Exnar, I ;
Lorenzen, V ;
Nesper, R ;
Graetzel, M .
CHEMISTRY OF MATERIALS, 2004, 16 (03) :477-485
[9]   Electrochemical and photoelectrochemical investigation of single-crystal anatase [J].
Kavan, L ;
Gratzel, M ;
Gilbert, SE ;
Klemenz, C ;
Scheel, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (28) :6716-6723
[10]   Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries [J].
Komaba, Shinichi ;
Murata, Wataru ;
Ishikawa, Toru ;
Yabuuchi, Naoaki ;
Ozeki, Tomoaki ;
Nakayama, Tetsuri ;
Ogata, Atsushi ;
Gotoh, Kazuma ;
Fujiwara, Kazuya .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (20) :3859-3867