Finite element superconvergence approximation for one-dimensional singularly perturbed problems

被引:69
作者
Zhang, ZM [1 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
convection-diffusion; reaction-diffusion; finite element method; superconvergence; singular perturbation; Shishkin mesh;
D O I
10.1002/num.10001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Superconvergence approximations of singularly perturbed two-point boundary value problems of reaction-diffusion type and convection-diffusion type are studied. By applying the standard finite element method of any fixed order p on a modified Shishkin mesh, superconvergence error bounds of (N-1 ln(N + 1))(p+1) in a discrete energy norm in approximating problems with the exponential type boundary layers are established. The error bounds are uniformly valid with respect to the singular perturbation parameter. Numerical tests indicate that the error estimates are sharp; in particular, the logarithmic factor is not removable. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:374 / 395
页数:22
相关论文
共 23 条
[11]   Optimal approximability of solutions of singularly perturbed two-point boundary value problems [J].
Kellogg, RB ;
Stynes, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1808-1816
[12]   On the robust exponential convergence of hp finite element methods for problems with boundary layers [J].
Melenk, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (04) :577-601
[13]  
MELENK JM, 1999, E W J NUMER MATH, V7, P31
[14]  
Miller JJ, 2012, Fitted numerical methods for singular perturbation problems
[15]  
Morton K. W, 1996, Numerical Solution of Convection-Diffusion Problems
[16]  
Roos HG, 1998, Z ANGEW MATH MECH, V78, P291, DOI 10.1002/(SICI)1521-4001(199805)78:5<291::AID-ZAMM291>3.0.CO
[17]  
2-R
[18]  
Roos HG, 1996, NUMERICAL METHODS SI
[19]  
SCHATZ AH, 1983, MATH COMPUT, V40, P47, DOI 10.1090/S0025-5718-1983-0679434-4
[20]   The p and hp versions of the finite element method for problems with boundary layers [J].
Schwab, C ;
Suri, M .
MATHEMATICS OF COMPUTATION, 1996, 65 (216) :1403-1429