Finite element superconvergence approximation for one-dimensional singularly perturbed problems

被引:69
作者
Zhang, ZM [1 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
convection-diffusion; reaction-diffusion; finite element method; superconvergence; singular perturbation; Shishkin mesh;
D O I
10.1002/num.10001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Superconvergence approximations of singularly perturbed two-point boundary value problems of reaction-diffusion type and convection-diffusion type are studied. By applying the standard finite element method of any fixed order p on a modified Shishkin mesh, superconvergence error bounds of (N-1 ln(N + 1))(p+1) in a discrete energy norm in approximating problems with the exponential type boundary layers are established. The error bounds are uniformly valid with respect to the singular perturbation parameter. Numerical tests indicate that the error estimates are sharp; in particular, the logarithmic factor is not removable. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:374 / 395
页数:22
相关论文
共 23 条
[1]   Reliable and robust a posteriori error estimation for singularly perturbed reaction-diffusion problems [J].
Ainsworth, M ;
Babuska, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) :331-353
[2]  
[Anonymous], 1991, HDB NUMER ANAL
[3]  
Atkinson K. E., 1989, INTRO NUMERICAL ANAL
[4]   Adaptive refinement for convection-diffusion problems based on a defect-correction technique and finite difference method [J].
Axelsson, O ;
Nikolova, M .
COMPUTING, 1997, 58 (01) :1-30
[5]   Avoiding slave points in an adaptive refinement procedure for convection-diffusion problems in 2D [J].
Axelsson, O ;
Nikolova, M .
COMPUTING, 1998, 61 (04) :331-357
[6]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[7]  
DAVIS PJ, 1984, METHODS NUMERICAL IN
[8]  
HUGHES T, 1979, MULTIDIMENSIONAL UPW, V34
[9]  
JOHNSON C, 1987, MATH COMPUT, V49, P25, DOI 10.1090/S0025-5718-1987-0890252-8
[10]  
Johnson C., 1987, Numerical Solution of Partial Differemtial Equations by the Finite Element Method