THE STRUCTURE OF THE FREE BOUNDARY FOR LOWER DIMENSIONAL OBSTACLE PROBLEMS

被引:95
作者
Athanasopoulos, I.
Caffarelli, L. A.
Salsa, S.
机构
[1] University of Crete, Department of Applied Mathematics, 409 Herakleion, Crete, Knossos Avenue
[2] Institute of Applied and Computational Mathematics, FORTH, 71110 Herakleion, Crete
[3] Department of Mathematics, University of Texas at Austin, Austin
[4] Dipartimento di Matematica, Politecnico di Milano, 20133 Milano, Piazza Leonardo Da Vinci
关键词
D O I
10.1353/ajm.2008.0016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the regularity of the "free surface" in boundary obstacle problems. We show that near a non-degenerate point the free boundary is a C-1,C-alpha (n-2)-dimensional surface in Rn-1.
引用
收藏
页码:485 / 498
页数:14
相关论文
共 11 条
[1]  
[Anonymous], ANN SC NORM SUPE 4 S
[2]  
[Anonymous], 2005, THESIS U TEXAS AUSTI
[3]   A THEOREM OF REAL ANALYSIS AND ITS APPLICATION TO FREE-BOUNDARY PROBLEMS [J].
ATHANASOPOULOS, I ;
CAFFARELLI, LA .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (05) :499-502
[4]  
Athanasopoulos I., 2006, J MATH SCI N Y, V132, P274
[6]  
Caffarelli L.A., 2005, GEOMETRIC APPROACH F
[7]  
Caffarelli L. A., 1979, COMMUN PART DIFF EQ, V4, P1067
[8]  
Duvaut G., 1972, INEQUATIONS MECHANIQ
[9]   BOUNDARY-BEHAVIOR OF HARMONIC-FUNCTIONS IN NON-TANGENTIALLY ACCESSIBLE DOMAINS [J].
JERISON, DS ;
KENIG, CE .
ADVANCES IN MATHEMATICS, 1982, 46 (01) :80-147
[10]  
Richardson D., 1978, THESIS U BRIT COLUMB