AN IMPROVED LMI APPROACH FOR ROBUST STATIC OUTPUT FEEDBACK STABILIZATION OF NONLINEAR SYSTEMS

被引:0
作者
Bedioui, Neila [1 ]
Salhi, Salah [1 ]
Ksouri, Mekki [1 ]
机构
[1] Ecole Natl Ingenieurs Tunis ENT, LACS, Tunis, Tunisia
来源
2008 5TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS AND DEVICES, VOLS 1 AND 2 | 2008年
关键词
nonlinear systems; Lyapunov function; stability; static output feedback synthesis; LMI;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper deals with the problem of robust stability for a class of nonlinear systems. The systems are composed of a linear constant part perturbated by an additive nonlinear function which satisfies a quadratic constraint A new sufficient condition, formulated in terms of linear matrix inequality LMI, is presented for static output feedback stabilization. Numerical examples are given to illustrate the effectiveness of the proposed design methods.
引用
收藏
页码:464 / 469
页数:6
相关论文
共 10 条
[1]  
Boyd S., 1994, LINEAR MATRIX INEQUA, V15
[2]   Extended H2 and H∞ norm characterizations and controller parametrizations for discrete-time systems [J].
De Oliveira, MC ;
Geromel, JC ;
Bernussou, J .
INTERNATIONAL JOURNAL OF CONTROL, 2002, 75 (09) :666-679
[3]   ROBUST STABILIZATION OF DISCRETE-TIME LINEAR-SYSTEMS WITH NORM-BOUNDED TIME-VARYING UNCERTAINTY [J].
GARCIA, G ;
BERNUSSOU, J ;
ARZELIER, D .
SYSTEMS & CONTROL LETTERS, 1994, 22 (05) :327-339
[4]  
HADDAD WM, 1995, IEEE T AUTOMAT CONTR, V40
[5]   Robust stabilization for a class of discrete-time non-linear systems via output feedback: the unified LMI approach [J].
Ho, DWC ;
Lu, GP .
INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (02) :105-115
[6]  
LU G, 2003, IEEE T AUTOMAT CONTL, V51, P818
[7]   Robust stabilization of nonlinear systems: The LMI approach [J].
Siljak, DD ;
Stipanovic, DM .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2000, 6 (05) :461-493
[8]   Robust stability and stabilization of discrete-time non-linear systems: the LMI approach [J].
Stipanovic, DM ;
Siljak, DD .
INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (09) :873-879
[9]  
Yakubovich V. A., 1977, Vestnick Leningrad Univ. Math., V4, P73
[10]   Robust stabilization for non-linear discrete-time systems [J].
Zuo, ZQ ;
Wang, JZ ;
Huang, L .
INTERNATIONAL JOURNAL OF CONTROL, 2004, 77 (04) :384-388