Lattice path encodings in a combinatorial proof of a differential identity

被引:3
作者
Varvak, Anna [1 ]
机构
[1] Soka Univ Amer, Aliso Viejo, CA 92656 USA
关键词
Lattice paths; Motzkin paths; Lukasiewicz paths; Differential operators;
D O I
10.1016/j.disc.2007.10.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We specify procedures by which Lukasiewicz paths can encode combinatorial objects, such as involutions, partitions, and permutations. As application, We use these encoding procedures to give a combinatorial proof of the differential operator identity exp (y(d/dx + f(x))) = exp (integral(y)(0) f(t + x)dt) exp (y d/dx). due to Stanley. Taylor's theorem is a special case of this differential identity where f (x) = 0. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:5834 / 5840
页数:7
相关论文
共 6 条
[1]  
[Anonymous], ANN SCI MATH QUEBEC
[2]  
CARLITZ L, 1975, FIBONACCI QUART, V13, P71
[3]  
FLAJOLET P, 1980, DISCRETE MATH, V32, P125, DOI 10.1016/0012-365X(80)90050-3
[4]  
Stanley R., 1988, J. Amer. Math. Sc., V1, P919, DOI DOI 10.2307/1990995
[5]  
Stanley R.P., 1999, Enumerative Combinatorics, V2
[6]  
LECT NOTES MATH