Quantum Fisher information matrix in Heisenberg XY model

被引:21
作者
Bakmou, L. [1 ]
Slaoui, A. [1 ]
Daoud, M. [2 ]
Laamara, R. Ahl [1 ,3 ]
机构
[1] Mohammed V Univ Rabat, Fac Sci, LPHE MS, Rabat, Morocco
[2] Univ Ibn Tofail, Fac Sci, Dept Phys, Kenitra, Morocco
[3] Mohammed V Univ Rabat, CPM, Rabat, Morocco
关键词
Quantum estimation; Quantum Fisher information matrix; Quantum Heisenberg XY model; ENTANGLEMENT; COMPUTATION;
D O I
10.1007/s11128-019-2282-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum Fisher information matrix provides us with a tool to determine the precision, in any multiparametric estimation protocol, through quantum Cramer-Rao bound. In this work, we study simultaneous and individual estimation strategies using the density matrix vectorization method. Two special Heisenberg XY models are considered. The first one concerns the anisotropic XY model in which the temperature T and the anisotropic parameter gamma are estimated. The second situation concerns the isotropic XY model submitted to an external magnetic field B in which the temperature and the magnetic field are estimated. Our results show that the simultaneous strategy of multiple parameters is always advantageous and can provide a better precision than the individual strategy in the multiparameter estimation procedures.
引用
收藏
页数:20
相关论文
共 65 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]  
[Anonymous], ARXIV12092392
[3]  
[Anonymous], ARXIV09112539
[4]  
[Anonymous], QUANTUM INVERSE SCAT
[5]  
[Anonymous], 2018, Phys. Rev. A
[6]  
[Anonymous], 1996, Quantum Many-body Systems in One Dimension
[7]  
[Anonymous], ARXIV180105188
[8]   Phase estimation for thermal Gaussian states [J].
Aspachs, M. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. .
PHYSICAL REVIEW A, 2009, 79 (03)
[9]   Optimal Quantum Estimation of the Unruh-Hawking Effect [J].
Aspachs, Mariona ;
Adesso, Gerardo ;
Fuentes, Ivette .
PHYSICAL REVIEW LETTERS, 2010, 105 (15)
[10]   Entanglement is not very useful for estimating multiple phases [J].
Ballester, MA .
PHYSICAL REVIEW A, 2004, 70 (03) :032310-1