Complex-Valued Stacked Denoising Autoencoders

被引:2
作者
Popa, Calin-Adrian [1 ]
机构
[1] Polytech Univ Timisoara, Dept Comp & Software Engn, Blvd V Parvan 2, Timisoara 300223, Romania
来源
ADVANCES IN NEURAL NETWORKS - ISNN 2018 | 2018年 / 10878卷
关键词
Complex-valued neural networks; Stacked denoising autoencoders; Deep neural networks;
D O I
10.1007/978-3-319-92537-0_8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Stacking layers of denoising autoencoders, which are trained to reconstruct corrupted versions of their inputs, results in a type of deep neural network architecture called stacked denoising autoencoders. This paper introduces a model of complex-valued stacked denoising autoencoders, which can be used to build complex-valued deep neural networks. Experiments done using the MNIST and FashionMNIST datasets show superior performance of the complex-valued stacked denoising autoencoders with respect to their real-valued counterparts, both in terms of reconstruction error, and in terms of classification error.
引用
收藏
页码:64 / 71
页数:8
相关论文
共 22 条
[1]  
[Anonymous], 2008, ICML 08, DOI 10.1145/1390156.1390294
[2]  
Arjovsky M., 2016, ICML 2016
[3]   Complex-valued autoencoders [J].
Baldi, Pierre ;
Lu, Zhiqin .
NEURAL NETWORKS, 2012, 33 :136-147
[4]  
Bengio Y., 2006, ADV NEURAL INFORM PR, V19
[5]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[6]   Invariant Scattering Convolution Networks [J].
Bruna, Joan ;
Mallat, Stephane .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1872-1886
[7]  
Erhan D, 2010, J MACH LEARN RES, V11, P625
[8]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[9]  
Guberman N., 2016, THESIS
[10]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507