Statistical inference using GLEaM model with spatial heterogeneity and correlation between regions

被引:0
|
作者
Tan, Yixuan [1 ]
Zhang, Yuan [2 ]
Cheng, Xiuyuan [1 ]
Zhou, Xiao-Hua [3 ,4 ,5 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27706 USA
[2] Renmin Univ China, Sch Stat, Beijing, Peoples R China
[3] Peking Univ, Ctr Stat Sci, Beijing, Peoples R China
[4] Peking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R China
[5] Peking Univ, Sch Publ Hlth, Dept Biostat, Beijing, Peoples R China
基金
中国国家自然科学基金; 比尔及梅琳达.盖茨基金会;
关键词
COVID-19; CHINA;
D O I
10.1038/s41598-022-18775-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A better understanding of various patterns in the coronavirus disease 2019 (COVID-19) spread in different parts of the world is crucial to its prevention and control. Motivated by the previously developed Global Epidemic and Mobility (GLEaM) model, this paper proposes a new stochastic dynamic model to depict the evolution of COVID-19. The model allows spatial and temporal heterogeneity of transmission parameters and involves transportation between regions. Based on the proposed model, this paper also designs a two-step procedure for parameter inference, which utilizes the correlation between regions through a prior distribution that imposes graph Laplacian regularization on transmission parameters. Experiments on simulated data and real-world data in China and Europe indicate that the proposed model achieves higher accuracy in predicting the newly confirmed cases than baseline models.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Statistical inference using GLEaM model with spatial heterogeneity and correlation between regions
    Yixuan Tan
    Yuan Zhang
    Xiuyuan Cheng
    Xiao-Hua Zhou
    Scientific Reports, 12
  • [2] DISTRIBUTED ESTIMATION OF STATISTICAL CORRELATION MEASURES FOR SPATIAL INFERENCE IN WSNS
    Hernandez-Penaloza, Gustavo
    Anensio-Marco, Cesar
    Beferull-Lozano, Baltasar
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 699 - 703
  • [3] Statistical Inference of Partially Specified Spatial Autoregressive Model
    Zhang, Yuan-qing
    Yang, Guang-ren
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (01): : 1 - 16
  • [4] Statistical inference in functional semiparametric spatial autoregressive model
    Liu, Gaosheng
    Bai, Yang
    AIMS MATHEMATICS, 2021, 6 (10): : 10890 - 10906
  • [5] Statistical Inference of Partially Specified Spatial Autoregressive Model
    Yuan-qing ZHANG
    Guang-ren YANG
    ActaMathematicaeApplicataeSinica, 2015, 31 (01) : 1 - 16
  • [6] Statistical inference of partially specified spatial autoregressive model
    Yuan-qing Zhang
    Guang-ren Yang
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 1 - 16
  • [7] Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass
    Zhu, F.
    Nguyen, H. K.
    Song, S. X.
    Aji, Daisman P. B.
    Hirata, A.
    Wang, H.
    Nakajima, K.
    Chen, M. W.
    NATURE COMMUNICATIONS, 2016, 7
  • [8] Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass
    F. Zhu
    H. K. Nguyen
    S. X. Song
    Daisman P. B. Aji
    A. Hirata
    H. Wang
    K. Nakajima
    M. W. Chen
    Nature Communications, 7
  • [9] Quantitative assessment of tumor heterogeneity using spatial statistical methods
    Barbee, D
    Smith, E
    Jeraj, R
    MEDICAL PHYSICS, 2005, 32 (06) : 1900 - 1900
  • [10] Statistical inference for a Poisson process model of scanning fluorescence correlation spectroscopy
    Benn, AG
    Kulperger, RJ
    ENVIRONMETRICS, 1996, 7 (02) : 167 - 183