Recent developments and future directions in meta-analysis of differential gene expression in livestock RNA-Seq

被引:12
|
作者
Keel, Brittney N. N. [1 ]
Lindholm-Perry, Amanda K. K. [1 ]
机构
[1] USDA ARS, Roman L Hruska US Meat Anim Res Ctr, Clay Ctr, NE 68933 USA
关键词
RNA-seq; meta-analysis; livestock; p-value combination; gene expression; FEED-EFFICIENCY; TRANSCRIPTOME; MUSCLE;
D O I
10.3389/fgene.2022.983043
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Decreases in the costs of high-throughput sequencing technologies have led to continually increasing numbers of livestock RNA-Seq studies in the last decade. Although the number of studies has increased dramatically, most livestock RNA-Seq experiments are limited by cost to a small number of biological replicates. Meta-analysis procedures can be used to integrate and jointly analyze data from multiple independent studies. Meta-analyses increase the sample size, which in turn increase both statistical power and robustness of the results. In this work, we discuss cutting edge approaches to combining results from multiple independent RNA-Seq studies to improve livestock transcriptomics research. We review currently published RNA-Seq meta-analyses in livestock, describe many of the key issues specific to RNA-Seq meta-analysis in livestock species, and discuss future perspectives.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Robustness of differential gene expression analysis of RNA-seq
    Stupnikov, A.
    McInerney, C. E.
    Savage, K. I.
    McIntosh, S. A.
    Emmert-Streib, F.
    Kennedy, R.
    Salto-Tellez, M.
    Prise, K. M.
    McArt, D. G.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3470 - 3481
  • [2] Differential meta-analysis of RNA-seq data from multiple studies
    Andrea Rau
    Guillemette Marot
    Florence Jaffrézic
    BMC Bioinformatics, 15
  • [3] Differential meta-analysis of RNA-seq data from multiple studies
    Rau, Andrea
    Marot, Guillemette
    Jaffrezic, Florence
    BMC BIOINFORMATICS, 2014, 15
  • [4] Impact of human gene annotations on RNA-seq differential expression analysis
    Yu Hamaguchi
    Chao Zeng
    Michiaki Hamada
    BMC Genomics, 22
  • [5] Differential gene expression analysis using coexpression and RNA-Seq data
    Yang, Ei-Wen
    Girke, Thomas
    Jiang, Tao
    BIOINFORMATICS, 2013, 29 (17) : 2153 - 2161
  • [6] Impact of human gene annotations on RNA-seq differential expression analysis
    Hamaguchi, Yu
    Zeng, Chao
    Hamada, Michiaki
    BMC GENOMICS, 2021, 22 (01)
  • [7] On Differential Gene Expression Using RNA-Seq Data
    Lee, Juhee
    Ji, Yuan
    Liang, Shoudan
    Cai, Guoshuai
    Mueller, Peter
    CANCER INFORMATICS, 2011, 10 : 205 - 215
  • [8] Meta-analysis of microarray and RNA-Seq gene expression datasets for carcinogenic risk: An assessment of Bisphenol A
    Jung, Junghyun
    Mok, Changsoo
    Lee, Woosuk
    Jang, Wonhee
    MOLECULAR & CELLULAR TOXICOLOGY, 2017, 13 (02) : 239 - 249
  • [9] Meta-analysis of microarray and RNA-Seq gene expression datasets for carcinogenic risk: An assessment of Bisphenol A
    Junghyun Jung
    Changsoo Mok
    Woosuk Lee
    Wonhee Jang
    Molecular & Cellular Toxicology, 2017, 13 : 239 - 249
  • [10] Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
    Cole Trapnell
    Adam Roberts
    Loyal Goff
    Geo Pertea
    Daehwan Kim
    David R Kelley
    Harold Pimentel
    Steven L Salzberg
    John L Rinn
    Lior Pachter
    Nature Protocols, 2012, 7 : 562 - 578