Development of a Silver Nanoparticle-Based Method for the Antioxidant Capacity Measurement of Polyphenols

被引:154
作者
Ozyurek, Mustafa [1 ]
Gungor, Nilay [1 ]
Baki, Sefa [1 ]
Guclu, Kubilay [1 ]
Apak, Resat [1 ]
机构
[1] Istanbul Univ, Dept Chem, Fac Engn, TR-34320 Istanbul, Turkey
关键词
SURFACE-PLASMON RESONANCE; GOLD NANOPARTICLES; PHENOLIC-COMPOUNDS; GREEN SYNTHESIS; ASSAYS; NEOCUPROINE; FLAVONOIDS; REDUCTION; OXIDATION; RAMAN;
D O I
10.1021/ac301925b
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A sensitive colorimetric method for the detection of polyphenols (i.e., flavonoids, simple phenolic, and hydroxycinnamic acids) was proposed in this research based on the reduction of Ag+ ions by polyphenols in the presence of citrate-stabilized silver seeds. The color of the stable suspension was controlled by varying the concentration of trisodium citrate, silver nitrate, and silver seeds. The reduction of Ag+ to spherical silver nanoparticles (SNPs) by polyphenols in the presence of trisodium citrate and silver seeds produced a very intense surface plasmon resonance (SPR) absorption band of SNPs at 423 nm. The plasmon absorbance of SNPs allows the quantitative spectrophotometric detection of the polyphenols, and the developed method gave a linear response over a wide concentration range of standard polyphenolic compounds. In contrast to other reported NP-based antioxidant assays, it was established in this work that growth but not nucleation of SNPs gave a linear concentration-dependent response. The trolox equivalent antioxidant capacity (TEAC) values of various (hydrophilic and lipophilic) antioxidants using the developed method were comparable to those of the CUPRAC assay. Common food ingredients like oxalate, citrate, fruit acids, amino acids, and reducing sugars did not interfere with the proposed sensing method. This assay was validated through linearity, additivity, precision and recovery, demonstrating that the assay is reliable and robust. The developed method was used to screen total antioxidant capacity (TAC) of some commercial fruit juices and herbal teas without preliminary treatment, and showed a promising potential for the preparation of antioxidant inventories of a wide range of food plants.
引用
收藏
页码:8052 / 8059
页数:8
相关论文
共 35 条
[1]  
[Anonymous], J CHEM SOC FARADAY T
[2]  
[Anonymous], 1993, Statistics for Analytical Chemistry
[3]   Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine:: CUPRAC method [J].
Apak, R ;
Güçlu, K ;
Özyürek, M ;
Karademir, SE .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2004, 52 (26) :7970-7981
[4]   Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay [J].
Apak, Resat ;
Guclu, Kubilay ;
Ozyurek, Mustafa ;
Celik, Saliha Esin .
MICROCHIMICA ACTA, 2008, 160 (04) :413-419
[5]   Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay [J].
Apak, Resat ;
Gueclue, Kubilay ;
Demirata, Birsen ;
Oezyuerek, Mustafa ;
Celik, Saliha Esin ;
Bektasoglu, Burcu ;
Berker, K. Isil ;
Oezyurt, Dilek .
MOLECULES, 2007, 12 (07) :1496-1547
[6]   Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J].
Cao, YWC ;
Jin, RC ;
Mirkin, CA .
SCIENCE, 2002, 297 (5586) :1536-1540
[7]   Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin [J].
Egorova, EM ;
Revina, AA .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2000, 168 (01) :87-96
[8]   Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes [J].
Eustis, S ;
El-Sayed, MA .
CHEMICAL SOCIETY REVIEWS, 2006, 35 (03) :209-217
[9]   Biological and green synthesis of silver nanoparticles [J].
Forough M. ;
Khalil F. .
Turkish Journal of Engineering and Environmental Sciences, 2010, 34 (04) :281-287
[10]   Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes [J].
Frattini, A ;
Pellegri, N ;
Nicastro, D ;
de Sanctis, O .
MATERIALS CHEMISTRY AND PHYSICS, 2005, 94 (01) :148-152