Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices

被引:218
作者
Chen, Zongping [1 ]
Narita, Akimitsu [2 ,3 ]
Muellen, Klaus [2 ,4 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[2] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[3] Grad Univ, Okinawa Inst Sci & Technol, Organ & Carbon Nanomat Unit, Okinawa 9040495, Japan
[4] Univ Cologne, Dept Chem, Greinstr 4-6, D-50939 Cologne, Germany
基金
欧洲研究理事会; 欧盟地平线“2020”; 美国国家科学基金会;
关键词
chemical vapor deposition; graphene nanoribbons; on-surface synthesis; ultrahigh vacuum; BOTTOM-UP SYNTHESIS; BAND-GAP; CARBON NANOTUBES; LARGE-AREA; ARMCHAIR; GROWTH; HETEROJUNCTIONS; FABRICATION; DEPOSITION; FILMS;
D O I
10.1002/adma.202001893
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene nanoribbons (GNRs) are quasi-1D graphene strips, which have attracted attention as a novel class of semiconducting materials for various applications in electronics and optoelectronics. GNRs exhibit unique electronic and optical properties, which sensitively depend on their chemical structures, especially the width and edge configuration. Therefore, precision synthesis of GNRs with chemically defined structures is crucial for their fundamental studies as well as device applications. In contrast to top-down methods, bottom-up chemical synthesis using tailor-made molecular precursors can achieve atomically precise GNRs. Here, the synthesis of GNRs on metal surfaces under ultrahigh vacuum (UHV) and chemical vapor deposition (CVD) conditions is the main focus, and the recent progress in the field is summarized. The UHV method leads to successful unambiguous visualization of atomically precise structures of various GNRs with different edge configurations. The CVD protocol, in contrast, achieves simpler and industry-viable fabrication of GNRs, allowing for the scale up and efficient integration of the as-grown GNRs into devices. The recent updates in device studies are also addressed using GNRs synthesized by both the UHV method and CVD, mainly for transistor applications. Furthermore, views on the next steps and challenges in the field of on-surface synthesized GNRs are provided.
引用
收藏
页数:26
相关论文
共 156 条
[1]   Deposition, Characterization, and Thin-Film-Based Chemical Sensing of Ultra-long Chemically Synthesized Graphene Nanoribbons [J].
Abbas, Ahmad N. ;
Liu, Gang ;
Narita, Akimitsu ;
Orosco, Manuel ;
Feng, Xinliang ;
Muellen, Klaus ;
Zhou, Chongwu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (21) :7555-7558
[2]   Surface-Synthesized Graphene Nanoribbons for Room Temperature Switching Devices: Substrate Transfer and ex Situ Characterization [J].
Barin, Gabriela Bonin ;
Fairbrother, Andrew ;
Rotach, Lukas ;
Bayle, Maxime ;
Paillet, Matthieu ;
Liang, Liangbo ;
Meunier, Vincent ;
Hauert, Roland ;
Dumslaff, Tim ;
Narita, Akimitsu ;
Muellen, Klaus ;
Sahabudeen, Hafeesudeen ;
Berger, Reinhard ;
Feng, Xinliang ;
Fasel, Roman ;
Ruffieux, Pascal .
ACS APPLIED NANO MATERIALS, 2019, 2 (04) :2184-2192
[3]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[4]   Molecules-Oligomers-Nanowires-Graphene Nanoribbons: A Bottom-Up Stepwise On-Surface Covalent Synthesis Preserving Long-Range Order [J].
Basagni, Andrea ;
Sedona, Francesco ;
Pignedoli, Carlo A. ;
Cattelan, Mattia ;
Nicolas, Louis ;
Casarin, Maurizio ;
Sambi, Mauro .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (05) :1802-1808
[5]   Bottom-up graphene nanoribbon field-effect transistors [J].
Bennett, Patrick B. ;
Pedramrazi, Zahra ;
Madani, Ali ;
Chen, Yen-Chia ;
de Oteyza, Dimas G. ;
Chen, Chen ;
Fischer, Felix R. ;
Crommie, Michael F. ;
Bokor, Jeffrey .
APPLIED PHYSICS LETTERS, 2013, 103 (25)
[6]   Graphene Nanoribbons Derived from Zigzag Edge-Encased Poly(para-2,9-dibenzo[bc,kl]coronenylene) Polymer Chains [J].
Beyer, Doreen ;
Wang, Shiyong ;
Pignedoli, Carlo A. ;
Melidonie, Jason ;
Yuan, Bingkai ;
Li, Can ;
Wilhelm, Jan ;
Ruffieux, Pascal ;
Berger, Reinhard ;
Muellen, Klaus ;
Fasel, Roman ;
Feng, Xinliang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (07) :2843-2846
[7]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[8]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[9]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[10]   Aligning the Band Gap of Graphene Nanoribbons by Monomer Doping [J].
Bronner, Christopher ;
Stremlau, Stephan ;
Gille, Marie ;
Brausse, Felix ;
Haase, Anton ;
Hecht, Stefan ;
Tegeder, Petra .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (16) :4422-4425