Julia sets and Mandelbrot sets in Noor orbit

被引:51
作者
Ashish [1 ]
Rani, Mamta [2 ]
Chugh, Renu [1 ]
机构
[1] Maharshi Dayanand Univ, Dept Math, Rohtak 124001, Haryana, India
[2] Cent Univ Rajasthan, Dept Comp Sci, Kishangarh 305801, India
关键词
Julia set; Mandelbrot set; Four-step feedback process; Noor orbit; TOPOLOGICAL CLOSENESS; CUBIC POLYNOMIALS; NOISE; ITERATION;
D O I
10.1016/j.amc.2013.11.077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In recent literature, researchers have generated Julia sets and Mandelbrot sets in Mann and Ishikawa orbits that are examples of two-step and three-step feedback processes respectively. This paper presents further generalization of Julia and Mandelbrot sets for complex-valued polynomials such as quadratic, cubic and higher degree polynomials using a Noor orbit, which is a four-step iterative procedure. The graphical images of Julia and Mandelbrot sets have been visualized and certain patterns in Mandelbrot sets have been recognized. It is fascinating to see that a few Mandelbrot sets are akin to a butterfly or a coupled urn or a coupled trident. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:615 / 631
页数:17
相关论文
共 53 条
[1]   Dynamic noise perturbed generalized superior Mandelbrot sets [J].
Agarwal, Rashi ;
Agarwal, Vishal .
NONLINEAR DYNAMICS, 2012, 67 (03) :1883-1891
[2]   On a topological closeness of perturbed Julia sets [J].
Andreadis, Ioannis ;
Karakasidis, Theodoros E. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) :2883-2890
[3]   On a topological closeness of perturbed Mandelbrot sets [J].
Andreadis, Ioannis ;
Karakasidis, Theodoros E. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (10) :3674-3683
[4]   On probabilistic Mandelbrot maps [J].
Andreadis, Ioannis ;
Karakasidis, Theodoros E. .
CHAOS SOLITONS & FRACTALS, 2009, 42 (03) :1577-1583
[5]  
[Anonymous], 1992, NEW FRONTIERS SCI
[6]  
[Anonymous], 2004, Res. Math. Educ
[7]  
[Anonymous], 2004, Res. Math. Educ.
[8]  
[Anonymous], 1984, PUBLICATIONS MATH OR
[9]   On the Julia set of the perturbed Mandelbrot map [J].
Argyris, J ;
Karakasidis, TE ;
Andreadis, I .
CHAOS SOLITONS & FRACTALS, 2000, 11 (13) :2067-2073
[10]   On perturbations of the Mandelbrot map [J].
Argyris, J ;
Andreadis, I ;
Karakasidis, TE .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1131-1136