An elastocapillary model of wood-fibre collapse

被引:9
|
作者
Akbari, Amir [1 ]
Hill, Reghan J. [1 ]
van de Ven, Theo G. M. [2 ,3 ]
机构
[1] McGill Univ, Dept Chem Engn, Montreal, PQ H3A 0C5, Canada
[2] McGill Univ, Pulp & Paper Res Ctr, Montreal, PQ H3A 2A7, Canada
[3] McGill Univ, Dept Chem, Montreal, PQ H3A 2A7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
elastocapillary; stability; wood-fibre collapse; drying; shrinkage; PART; 1; COMPOSITES; CELLULOSE; SHRINKAGE; DYNAMICS; SOFTWOOD; BRIDGES; ARRAYS; FILMS; WATER;
D O I
10.1098/rspa.2015.0184
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An elastocapillary model for drying-induced collapse is proposed. We consider a circular elastic membrane with a hole at the centre that is deformed by the capillary pressure of simply and doubly connected menisci. The membrane overlays a cylindrical cavity with rigid walls, trapping a prescribed volume of water. This geometry may be suitable for studying structural failures and stiction in micro-electromechanical systems during wet etching, where capillary surfaces experience catastrophic transitions. The dry state is determined using the dihedral-angle and volume-turning-point stability criteria. Open and collapsed conformations are predicted from the scaled hole radius, cavity aspect ratio, meniscus contact angle with the membrane and cavity walls, and an elastocapillary number measuring the membrane stretching rigidity relative to the water surface tension. For a given scaled hole radius and cavity aspect ratio, there is a critical elastocapillary number above which the system does not collapse upon drying. The critical elastocapillary number is weakly influenced by the contact angle over a wide range of the scaled hole radius, thus indicating a limitation of surface hydrophobization for controlling the dry-state conformation. The model is applied to the drying of wood fibres above the fibre saturation point, determining the conditions leading to collapse.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Elastocapillary self-folding: buckling, wrinkling, and collapse of floating filaments
    Evans, Arthur A.
    Spagnolie, Saverio E.
    Bartolo, Denis
    Lauga, Eric
    SOFT MATTER, 2013, 9 (05) : 1711 - 1720
  • [22] A fluid-mechanical model of elastocapillary coalescence
    Singh, Kiran
    Lister, John R.
    Vella, Dominic
    JOURNAL OF FLUID MECHANICS, 2014, 745 : 621 - 646
  • [23] Wood as pulp and fibre
    von Monroy, JA
    Kienitz, GA
    DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 1934, 78 : 1393 - 1396
  • [24] Wood fibre batteries
    Redahan, Eoin
    MATERIALS WORLD, 2013, 21 (08) : 7 - 7
  • [25] Properties of Wood Fibre-Polypropylene Composites: Effect of Wood Fibre Source
    Butylina, Svetlana
    Martikka, Ossi
    Karki, Timo
    APPLIED COMPOSITE MATERIALS, 2011, 18 (02) : 101 - 111
  • [26] Properties of Wood Fibre-Polypropylene Composites: Effect of Wood Fibre Source
    Svetlana Butylina
    Ossi Martikka
    Timo Kärki
    Applied Composite Materials, 2011, 18 : 101 - 111
  • [27] Numerical analysis of edge deformations in external thermal insulation compound systems with wood-fibre insulating boards and large insulation thickness up to approx. 200 mm
    Ruether, Norbert
    BAUPHYSIK, 2007, 29 (05) : 323 - 327
  • [28] CELL COLLAPSE IN BALSA WOOD
    HAYASHI, K
    TERAZAWA, S
    DRYING TECHNOLOGY, 1992, 10 (05) : 1249 - 1265
  • [29] Chemical modification of model compounds, wood flour and fibre with acetic anhydride
    Haque, M. Nawshadul
    Hill, C.A.S.
    Journal of the Institute of Wood Science, 2000, 15 (03): : 109 - 115
  • [30] Parameter estimation and model selection for water sorption in a wood fibre material
    Berger, Julien
    Colinart, Thibaut
    Loiola, Bruna R.
    Orlande, Helcio R. B.
    WOOD SCIENCE AND TECHNOLOGY, 2020, 54 (06) : 1423 - 1446