Indoor Robot Localization by RSSI/IMU Sensor Fusion

被引:0
作者
Malyavej, Veerachai [1 ]
Kumkeaw, Warapon [2 ]
Aorpimai, Manop [1 ]
机构
[1] Mahanakorn Univ Technol, Fac Engn, Dept Control Instrumentat & Mechatron, Bangkok, Thailand
[2] Mahanakorn Univ Technol, Fac Engn, Elect Engn Grad Program, Bangkok, Thailand
来源
2013 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON) | 2013年
关键词
Localization; RSSI; IMU; Kalman Filter;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Localization is the crucial problem for mobile robot navigation. For indoor mobile robot, since a global positioning system (GPS) is incapable, another promising technique to detect the position is the received signal strength indicator (RSSI) from wireless communication. To improve the precision and robustness of mobile unit localization, an inertial measurement unit (IMU) is normally used. In this report, we propose the algorithm for mobile robot localization based on sensor fusion between RSSI from wireless local area network (WLAN) and an IMU. The proposed fusion scheme is based on the extended Kalman filter (EKF). The experiment is conducted by using mobile unit equipped with low-cost IMU and a wireless communication module together with access points to evaluate the performance of our algorithm, and the result is promising.
引用
收藏
页数:6
相关论文
共 21 条
[1]  
Anderson B.D.O., 1979, Optimal Filtering
[2]  
[Anonymous], 2002, Wireless Communications: Principles and Practice
[3]  
Borenstein J., 1997, DTIC DOCUMENT
[4]   GPS/INS uses low-cost MEMS IMU [J].
Brown, AK .
IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2005, 20 (09) :3-10
[5]   GPS/IMU data fusion using multisensor Kalman filtering: introduction of contextual aspects [J].
Caron, Francois ;
Duflos, Emmanuel ;
Pomorski, Denis ;
Vanheeghe, Philippe .
INFORMATION FUSION, 2006, 7 (02) :221-230
[6]  
Corrales J. A., 2008, P 2008 3 ACM IEEE IN, P193, DOI 10.1145/1349822.1349848
[7]  
Dudek G., 2010, Computational Principles of Mobile Robotics
[8]   Multisensor data fusion: A review of the state-of-the-art [J].
Khaleghi, Bahador ;
Khamis, Alaa ;
Karray, Fakhreddine O. ;
Razavi, Saiedeh N. .
INFORMATION FUSION, 2013, 14 (01) :28-44
[9]   Comparative evaluation of Received Signal-Strength Index (RSSI) based indoor localization techniques for construction jobsites [J].
Luo, Xiaowei ;
O'Brien, William J. ;
Julien, Christine L. .
ADVANCED ENGINEERING INFORMATICS, 2011, 25 (02) :355-363
[10]   Adaptive Kalman filtering for INS GPS [J].
Mohamed, AH ;
Schwarz, KP .
JOURNAL OF GEODESY, 1999, 73 (04) :193-203