Influence of correlations on the velocity statistics of scalar granular gases

被引:96
作者
Baldassarri, A
Marconi, UMB
Puglisi, A
机构
[1] Univ Camerino, Dipartimento Matemat & Fis, INFM Udr Camerino, I-62032 Camerino, Italy
[2] Univ Roma La Sapienza, I-00185 Rome, Italy
来源
EUROPHYSICS LETTERS | 2002年 / 58卷 / 01期
关键词
D O I
10.1209/epl/i2002-00600-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The free evolution of inelastic particles in one dimension is studied by means of Molecular Dynamics (MD), of an inelastic pseudo-Maxwell model and of a lattice model, with emphasis on the role of spatial correlations. We present a new exact solution of the 1d granular pseudo-Maxwell model for the scaling distribution of velocities and discuss how this model fails to describe correctly the homogeneous cooling stage of the 1d granular gas. Embedding the pseudo-Maxwell gas on a lattice (hence allowing for the onset of spatial correlations), we find a much better agreement with the MD simulations even in the inhomogeneous regime. This is seen by comparing the velocity distributions, the velocity profiles and the structure factors of the velocity field.
引用
收藏
页码:14 / 20
页数:7
相关论文
共 19 条
  • [1] [Anonymous], ESAIM MATH MODEL NUM, DOI DOI 10.1051/M2AN:1999118
  • [2] BALDASSARRI A, UNPUB MAXWELL GRANUL
  • [3] BALDASSARRI A, IN PRESS PHYS REV E
  • [4] BARRAT A, CONDMAT0110345
  • [5] Shocklike dynamics of inelastic gases
    Ben-Naim, E
    Chen, SY
    Doolen, GD
    Redner, S
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (20) : 4069 - 4072
  • [6] Multiscaling in inelastic collisions
    Ben-Naim, E
    Krapivsky, PL
    [J]. PHYSICAL REVIEW E, 2000, 61 (01): : R5 - R8
  • [7] On some properties of kinetic and hydrodynamic equations for inelastic interactions
    Bobylev, AV
    Carrillo, JA
    Gamba, IM
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (3-4) : 743 - 773
  • [8] THEORY OF PHASE-ORDERING KINETICS
    BRAY, AJ
    [J]. ADVANCES IN PHYSICS, 1994, 43 (03) : 357 - 459
  • [9] STATISTICS OF BALLISTIC AGGLOMERATION
    CARNEVALE, GF
    POMEAU, Y
    YOUNG, WR
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (24) : 2913 - 2916
  • [10] Exact statistical properties of the Burgers equation
    Frachebourg, L
    Martin, PA
    [J]. JOURNAL OF FLUID MECHANICS, 2000, 417 : 323 - 349