Oilseed halophytes: a potential source of biodiesel using saline degraded lands

被引:33
作者
Abideen, Zainul [1 ]
Qasim, Muhammad [1 ]
Rizvi, Rabab Fatima [1 ]
Gul, Bilquees [1 ]
Ansari, Raziuddin [1 ]
Khan, M. Ajmal [2 ]
机构
[1] Univ Karachi, Inst Sustainable Halophyte Utilizat, Karachi 75270, Pakistan
[2] Qatar Univ, Coll Arts & Sci, Ctr Sustainable Dev, Doha, Qatar
来源
BIOFUELS-UK | 2015年 / 6卷 / 5-6期
关键词
biodiesel; halophyte; Iodine Value; biodiesel quality; salinity; SALT TOLERANCE; FATTY-ACID; SEED OIL; GROWTH; SEEDLINGS; YIELD; NACL;
D O I
10.1080/17597269.2015.1090812
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The financial and technical aspects of using edible plants as a biodiesel source have been studied extensively, but research on the potential use of salt resistant, non-edible plants for this purpose remains relatively underexplored. Data available on salt tolerance range, seed oil content, composition of fatty acid methyl esters (FAME) and engine performance parameters - Iodine Value (IV), Cetane Number (CN) and Saponification Number (SN) - of 20 salt-resistant plants were examined to assess their suitability for use as diesel engine fuel. Most of the test species were perennial from family Amaranthaceae, exhibiting high salt tolerance. The quantity of their seed oil ranged from 10-30% while nine species contained >25% oil. The SN, IV and CN values varied from 130-206, 29-156 and 38-81, respectively. Based on the above mentioned parameters, seven halophytic plant species - Salicornia fruticosa, Cressa cretica, Arthrocnemum macrostachyum, Alhagi maurorum, Halogeton glomeratus, Kosteletzkya virginica and Atriplex rosea - appear to be promising biodiesel candidates. These non-food plants which can grow using saline resources and have an oil composition suitable for engine efficiency are more salt resistant than Jatropha or other glycophytic feedstock to serve in a bioenergy farming system. Cultivation of such plants for biodiesel production has the additional advantage of reclaiming degraded lands with the environmental benefit of carbon sequestration.
引用
收藏
页码:241 / 248
页数:8
相关论文
共 61 条
[41]   Prospects of castor (Ricinus communis L.) genotypes for biodiesel production in India [J].
Lavanya, C. ;
Murthy, I. Y. L. N. ;
Nagaraj, G. ;
Mukta, N. .
BIOMASS & BIOENERGY, 2012, 39 :204-209
[42]  
Liu X.G., 2005, FOOD SCI, V2, P42
[44]   The Ideal Vegetable Oil-based Biodiesel Composition: A Review of Social, Economical and Technical Implications [J].
Pinzi, S. ;
Garcia, I. L. ;
Lopez-Gimenez, F. J. ;
Luque de Castro, M. D. ;
Dorado, G. ;
Dorado, M. P. .
ENERGY & FUELS, 2009, 23 (5-6) :2325-2341
[45]  
Ponnammal N. R., 1993, Indian Forester, V119, P59
[46]   THE K/NA AND CA/NA RATIOS AND RAPESEED YIELD, UNDER SOIL-SALINITY OR SODICITY [J].
PORCELLI, CA ;
BOEM, FHG ;
LAVADO, RS .
PLANT AND SOIL, 1995, 175 (02) :251-255
[47]  
Prasad CG, 2006, Indian Pat. Appl., Patent No. [2005KO00656 A, 20060324]
[48]  
Qasim Muhammad, 2014, Journal of Coastal Life Medicine, V2, P22
[49]  
Qasim M, 2010, PAK J BOT, V42, P1543
[50]   Kosteletzkya virginica, an agroecoengineering halophytic species for alternative agricultural production in China's east coast:: Ecological adaptation and benefits, seed yield, oil content, fatty acid and biodiesel properties [J].
Ruan, C. -J. ;
Li, H. ;
Guo, Y. -Q. ;
Qin, P. ;
Gallagher, J. L. ;
Seliskar, D. M. ;
Lutts, S. ;
Mahy, G. .
ECOLOGICAL ENGINEERING, 2008, 32 (04) :320-328