Rolling Bearing Fault Diagnosis Method Based on Multiple Efficient Channel Attention Capsule Network

被引:1
|
作者
Wu, Kang [1 ,2 ]
Tao, Jie [1 ]
Yang, Dalian [3 ]
Chen, Hewen [1 ,2 ]
Yin, Shilei [1 ,2 ]
Xiao, Chixin [4 ]
机构
[1] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411201, Peoples R China
[2] Hunan Key Lab Serv Comp & Novel Software Technol, Xiangtan 411201, Peoples R China
[3] Hunan Univ Sci & Technol, Key Lab Mech Equipment Hlth Maintenance, Xiangtan 411201, Peoples R China
[4] Univ Wollongong, Wollongong, NSW 2522, Australia
来源
ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT I | 2022年 / 13338卷
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Efficient Channel Attention; Capsule network; Information interaction; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1007/978-3-031-06794-5_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the environment of strong noise, it is very difficult to extract bearing fault characteristics from vibration signals. To solve the problem, this paper proposes a fault diagnosis method based on Multiple Efficient Channel Attention Capsule Network (MECA-CapsNet). Due to diverse scales channel of attention mechanism, MECA-CapsNet can obtain multi-scale channels feature, enhance information interaction between different channels, and fuse key information of diverse scale receptive field. So, our model can effectively abstract the key information of bearing fault characters from noisy vibration signal. To verify the effectiveness of MECA-CapsNet, experiments are carried out on the bearing data set of CWRU. When the signal-to-noise ratio is from 4 dB to -4 dB, the accuracies of MECA-CapsNet are better than typical fault diagnosis methods. Then, T-SNE technology is used to visualize the features extraction process. The visualization result verifies that multiple ECA modules on different scales can effectively reduce noise interference and improve the accuracy of rolling bearing fault diagnosis.
引用
收藏
页码:357 / 370
页数:14
相关论文
共 50 条
  • [1] Fault Diagnosis of Rolling Bearing Based on Discrete Fourier Transform and Efficient Channel Attention
    Zhang, Shun
    Deng, Aidong
    Xu, Shuo
    Ding, Xue
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2024, 44 (04): : 754 - 760and830
  • [2] Rolling bearing fault diagnosis based on the enhanced channel attention network
    Huang Z.
    Chen Y.
    Liu J.
    Ni H.
    Zhang D.
    Cyber-Physical Systems, 2024, 10 (02) : 197 - 213
  • [3] Rolling Bearing Fault Diagnosis Method Based on Attention CNN and BiLSTM Network
    Guo, Yurong
    Mao, Jian
    Zhao, Man
    NEURAL PROCESSING LETTERS, 2023, 55 (03) : 3377 - 3410
  • [4] Rolling Bearing Fault Diagnosis Method Based on Attention CNN and BiLSTM Network
    Yurong Guo
    Jian Mao
    Man Zhao
    Neural Processing Letters, 2023, 55 : 3377 - 3410
  • [5] Improved convolutional capsule network method for rolling bearing fault diagnosis
    Zhao X.-Q.
    Chai J.-X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2024, 37 (05): : 885 - 895
  • [6] Improved capsule network method for rolling bearing fault diagnosis
    Sun Y.
    Peng G.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2021, 53 (01): : 23 - 28
  • [7] A study on rolling bearing fault diagnosis based on convolution capsule network
    Yang P.
    Su Y.
    Zhang Z.
    Su, Yanchen, 1600, Chinese Vibration Engineering Society (39): : 55 - 62and68
  • [8] A rolling bearing fault diagnosis method based on a convolutional neural network with frequency attention mechanism
    Zhou, Hui
    Liu, Runda
    Li, Yaxin
    Wang, Jiacheng
    Xie, Suchao
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (04): : 2475 - 2495
  • [9] Fault diagnosis method of rolling bearing based on attention mechanism
    Mao J.
    Guo Y.
    Zhao M.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (07): : 2233 - 2244
  • [10] A Fault Diagnosis Method of Rolling Bearing Based on Convolutional Neural Network
    Zhang, Bangcheng
    Gao, Shuo
    Hu, Guanyu
    Gao, Zhi
    Zhao, Yadong
    Du, Jianzhuang
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4709 - 4713