Entanglement entropy scaling in solid-state spin arrays via capacitance measurements

被引:10
作者
Banchi, Leonardo [1 ]
Bayat, Abolfazl [1 ]
Bose, Sougato [1 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
QUANTUM DOTS; SILICON; SIMULATIONS; SYSTEMS;
D O I
10.1103/PhysRevB.94.241117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solid-state spin arrays are being engineered in varied systems, including gated coupled quantum dots and interacting dopants in semiconductor structures. Beyond quantum computation, these arrays are useful integrated analog simulators for many-body models. As entanglement between individual spins is extremely short ranged in these models, one has to measure the entanglement entropy of a block in order to truly verify their many-body entangled nature. Remarkably, the characteristic scaling of entanglement entropy, predicted by conformal field theory, has yet to be measured. Here, we show that with as few as two replicas of a spin array, and capacitive double-dot singlet-triplet measurements on neighboring spin pairs, the above scaling of the entanglement entropy can be verified. This opens up the controlled simulation of quantum field theories, as we exemplify with uniform chains and Kondo-type impurity models, in engineered solid-state systems. Our procedure remains effective even in the presence of typical imperfections of realistic quantum devices and can be used for thermometry, and to bound entanglement and discord in mixed many-body states.
引用
收藏
页数:5
相关论文
共 51 条
[11]   Parity Effects in the Scaling of Block Entanglement in Gapless Spin Chains [J].
Calabrese, Pasquale ;
Campostrini, Massimo ;
Essler, Fabian ;
Nienhuis, Bernard .
PHYSICAL REVIEW LETTERS, 2010, 104 (09)
[12]   Measuring Entanglement Using Quantum Quenches [J].
Cardy, John .
PHYSICAL REVIEW LETTERS, 2011, 106 (15)
[13]   Goals and opportunities in quantum simulation [J].
Cirac, J. Ignacio ;
Zoller, Peter .
NATURE PHYSICS, 2012, 8 (04) :264-266
[14]   Dispersive Readout of a Few-Electron Double Quantum Dot with Fast rf Gate Sensors [J].
Colless, J. I. ;
Mahoney, A. C. ;
Hornibrook, J. M. ;
Doherty, A. C. ;
Lu, H. ;
Gossard, A. C. ;
Reilly, D. J. .
PHYSICAL REVIEW LETTERS, 2013, 110 (04)
[15]  
Curtright T. L., ARXIV12126972
[16]   Measuring Entanglement Growth in Quench Dynamics of Bosons in an Optical Lattice [J].
Daley, A. J. ;
Pichler, H. ;
Schachenmayer, J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (02)
[17]   Entanglement Spectrum, Critical Exponents, and Order Parameters in Quantum Spin Chains [J].
De Chiara, G. ;
Lepori, L. ;
Lewenstein, M. ;
Sanpera, A. .
PHYSICAL REVIEW LETTERS, 2012, 109 (23)
[18]   Entanglement entropy and negativity of disjoint intervals in CFT: some numerical extrapolations [J].
De Nobili, Cristiano ;
Coser, Andrea ;
Tonni, Erik .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015,
[19]   Quantum Dephasing in a Gated GaAs Triple Quantum Dot due to Nonergodic Noise [J].
Delbecq, M. R. ;
Nakajima, T. ;
Stano, P. ;
Otsuka, T. ;
Amaha, S. ;
Yoneda, J. ;
Takeda, K. ;
Allison, G. ;
Ludwig, A. ;
Wieck, A. D. ;
Tarucha, S. .
PHYSICAL REVIEW LETTERS, 2016, 116 (04)
[20]   Distillation of secret key and entanglement from quantum states [J].
Devetak, I ;
Winter, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2053) :207-235