Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction

被引:752
作者
Pinson, Matthew B. [1 ]
Bazant, Martin Z. [2 ,3 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
LITHIUM-ION BATTERIES; SOLID-ELECTROLYTE INTERPHASE; HIGH-PRECISION COULOMETRY; LEAD-ACID-BATTERIES; LIFEPO4; NANOPARTICLES; INSERTION ELECTRODES; NEGATIVE ELECTRODE; PHASE-SEPARATION; CELLS; SILICON;
D O I
10.1149/2.044302jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Cycle life is critically important in applications of rechargeable batteries, but lifetime prediction is mostly based on empirical trends, rather than mathematical models. In practical lithium-ion batteries, capacity fade occurs over thousands of cycles, limited by slow electrochemical processes, such as the formation of a solid-electrolyte interphase (SEI) in the negative electrode, which compete with reversible lithium intercalation. Focusing on SEI growth as the canonical degradation mechanism, we show that a simple single-particle model can accurately explain experimentally observed capacity fade in commercial cells with graphite anodes, and predict future fade based on limited accelerated aging data for short times and elevated temperatures. The theory is extended to porous electrodes, predicting that SEI growth is essentially homogeneous throughout the electrode, even at high rates. The lifetime distribution for a sample of batteries is found to be consistent with Gaussian statistics, as predicted by the single-particle model. We also extend the theory to rapidly degrading anodes, such as nanostructured silicon, which exhibit large expansion on ion intercalation. In such cases, large area changes during cycling promote SEI loss and faster SEI growth. Our simple models are able to accurately fit a variety of published experimental data for graphite and silicon anodes. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.044302jes] All rights reserved.
引用
收藏
页码:A243 / A250
页数:8
相关论文
共 51 条
[1]   Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge [J].
Bai, Peng ;
Cogswell, Daniel A. ;
Bazant, Martin Z. .
NANO LETTERS, 2011, 11 (11) :4890-4896
[2]   Nanoscale mapping of ion diffusion in a lithium-ion battery cathode [J].
Balke, N. ;
Jesse, S. ;
Morozovska, A. N. ;
Eliseev, E. ;
Chung, D. W. ;
Kim, Y. ;
Adamczyk, L. ;
Garcia, R. E. ;
Dudney, N. ;
Kalinin, S. V. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :749-754
[3]   Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes [J].
Baranchugov, V. ;
Markevich, E. ;
Pollak, E. ;
Salitra, G. ;
Aurbach, D. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (04) :796-800
[4]  
Bartlett N., 1982, INTERCALATION CHEM, P31
[5]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[6]   Aging mechanism in Li ion cells and calendar life predictions [J].
Broussely, M ;
Herreyre, S ;
Biensan, P ;
Kasztejna, P ;
Nechev, K ;
Staniewicz, RJ .
JOURNAL OF POWER SOURCES, 2001, 97-8 :13-21
[7]   How dynamic is the SEI? [J].
Bryngelsson, H. ;
Stjerndahl, M. ;
Gustafsson, T. ;
Edstrom, K. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :970-975
[8]   Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (02) :1132-1140
[9]   Coherency Strain and the Kinetics of Phase Separation in LiFePO4 Nanoparticles [J].
Cogswell, Daniel A. ;
Bazant, Martin Z. .
ACS NANO, 2012, 6 (03) :2215-2225
[10]   Development of a lead-acid battery for a hybrid electric vehicle [J].
Cooper, A .
JOURNAL OF POWER SOURCES, 2004, 133 (01) :116-125