On the elliptic logarithm method for elliptic diophantine equations: Reflections and an improvement

被引:17
作者
Stroeker, RJ
Tzanakis, N
机构
[1] Erasmus Univ, Inst Econometr, NL-3000 DR Rotterdam, Netherlands
[2] Univ Crete, Dept Math, Iraklion, Greece
关键词
diophantine equation; elliptic curve; elliptic logarithm;
D O I
10.1080/10586458.1999.10504395
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The elliptic logarithm method for the determination of all integral solutions of a given elliptic equation is discussed for equations with associated elliptic curve of moderately large rank. Major attention is given to the question of optimizing the choice of Mordell-Weil basis for the curves in question. A speculative argument suggests that for any curve of rank larger then 8 the calculations involved are unlikely to be feasible. The arguments are illustrated by examples of curves of rank 5, 6, 7, and 8, taken from the literature.
引用
收藏
页码:135 / 149
页数:15
相关论文
共 24 条
[1]  
BASMAKOVA IG, 1997, DOLCIANI MATH EXPOSI, V20
[2]   On sums of consecutive squares [J].
Bremner, A ;
Stroeker, RJ ;
Tzanakis, N .
JOURNAL OF NUMBER THEORY, 1997, 62 (01) :39-70
[3]  
CONNELL I, 1995, APECS MAPLE PROGRAM
[4]  
Cremona J.E., 1992, ALGORITHMS MODULAR E
[5]  
David S., 1995, Mem. Soc. Math. France (N.S.), V62
[6]  
DE WEGER B. M. M., 1989, CWI Tract, V65
[7]   COMPUTING INTEGRAL POINTS ON ELLIPTIC-CURVES [J].
GEBEL, J ;
PETHO, A ;
ZIMMER, HG .
ACTA ARITHMETICA, 1994, 68 (02) :171-192
[8]  
Horn R. A., 1986, Matrix analysis
[9]  
KRETSCHMER TJ, 1986, MATH COMPUT, V46, P627, DOI 10.1090/S0025-5718-1986-0829634-8
[10]  
Merriman JR, 1996, ACTA ARITH, V77, P385