Low-cost, simple, and scalable self-assembly of DNA origami nanostructures

被引:24
作者
Halley, Patrick D. [1 ,2 ]
Patton, Randy A. [2 ]
Chowdhury, Amjad [1 ,6 ]
Byrd, John C. [3 ,4 ]
Castro, Carlos E. [2 ,5 ]
机构
[1] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Internal Med, Div Hematol, Columbus, OH 43210 USA
[4] Ohio State Univ, OSU Comprehens Canc Ctr, Columbus, OH 43210 USA
[5] Ohio State Univ, Biophys Grad Program, Columbus, OH 43210 USA
[6] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
DNA origami; DNA nanotechnology; self assembly; scalable nanofabrication; low cost fabrication; nanotechnology education; NANOSCALE SHAPES; NANOROBOT; RELEASE; DESIGN;
D O I
10.1007/s12274-019-2384-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite demonstrating exciting potential for applications such as drug delivery and biosensing, the development of nanodevices for practical applications and broader use in research and education are still hindered by the time, effort, and cost associated with DNA origami fabrication. Simple and robust methods to perform and scale the DNA origami self-assembly process are critical to facilitate broader use and translation to industrial or clinical applications. We report a simple approach to fold DNA origami nanostructures that is fast, robust, and scalable. We demonstrate fabrication at scales approximately 100-1,500-fold higher than typical scales. We further demonstrate an approach we termed low-cost efficient annealing (LEAN) self-assembly involving initial heating at 65 degrees C for 10 min, then annealing at 51 degrees C for 2 h, followed by brief quenching at 4 degrees C that leads to effective assembly of a range of DNA origami structures tested. In contrast to other methods for scaling DNA origami assembly, this approach can be carried out using cheap and widely available equipment (e.g., hot plates, water baths, and laboratory burners) and uses standard recipes and materials so is readily applied to any existing or new DNA origami designs. We envision these methods can facilitate device development for commercial applications and facilitate broader use of DNA origami in research and education.
引用
收藏
页码:1207 / 1215
页数:9
相关论文
共 50 条
[1]   Engineering Cell Surface Function with DNA Origami [J].
Akbari, Ehsan ;
Mollica, Molly Y. ;
Lucas, Christopher R. ;
Bushman, Sarah M. ;
Patton, Randy A. ;
Shahhosseini, Melika ;
Song, Jonathan W. ;
Castro, Carlos E. .
ADVANCED MATERIALS, 2017, 29 (46)
[2]   Controlled Release of Encapsulated Cargo from a DNA Icosahedron using a Chemical Trigger [J].
Banerjee, Anusuya ;
Bhatia, Dhiraj ;
Saminathan, Anand ;
Chakraborty, Saikat ;
Kar, Shaunak ;
Krishnan, Yamuna .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (27) :6854-6857
[3]   DNA rendering of polyhedral meshes at the nanoscale [J].
Benson, Erik ;
Mohammed, Abdulmelik ;
Gardell, Johan ;
Masich, Sergej ;
Czeizler, Eugen ;
Orponen, Pekka ;
Hogberg, Bjorn .
NATURE, 2015, 523 (7561) :441-U139
[4]   A primer to scaffolded DNA origami [J].
Castro, Carlos Ernesto ;
Kilchherr, Fabian ;
Kim, Do-Nyun ;
Shiao, Enrique Lin ;
Wauer, Tobias ;
Wortmann, Philipp ;
Bathe, Mark ;
Dietz, Hendrik .
NATURE METHODS, 2011, 8 (03) :221-229
[5]   Versatile DNA Origami Nanostructures in Simplified and Modular Designing Framework [J].
Cui, Yan ;
Chen, Ruipeng ;
Kai, Mingxuan ;
Wang, Yaqi ;
Mi, Yongli ;
Wei, Bryan .
ACS NANO, 2017, 11 (08) :8199-8206
[6]   DNA Origami Nanoneedles on Freestanding Lipid Membranes as a Tool To Observe Isotropic-Nematic Transition in Two Dimensions [J].
Czogalla, Aleksander ;
Kauert, Dominik J. ;
Seidel, Ralf ;
Schwille, Petra ;
Petrov, Eugene P. .
NANO LETTERS, 2015, 15 (01) :649-655
[7]   A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads [J].
Douglas, Shawn M. ;
Bachelet, Ido ;
Church, George M. .
SCIENCE, 2012, 335 (6070) :831-834
[8]   Rapid prototyping of 3D DNA-origami shapes with caDNAno [J].
Douglas, Shawn M. ;
Marblestone, Adam H. ;
Teerapittayanon, Surat ;
Vazquez, Alejandro ;
Church, George M. ;
Shih, William M. .
NUCLEIC ACIDS RESEARCH, 2009, 37 (15) :5001-5006
[9]   Self-assembly of DNA into nanoscale three-dimensional shapes [J].
Douglas, Shawn M. ;
Dietz, Hendrik ;
Liedl, Tim ;
Hoegberg, Bjoern ;
Graf, Franziska ;
Shih, William M. .
NATURE, 2009, 459 (7245) :414-418
[10]  
Ducani C, 2013, NAT METHODS, V10, P647, DOI [10.1038/nmeth.2503, 10.1038/NMETH.2503]