GENERALIZED EIGENFUNCTIONS OF RELATIVISTIC SCHRODINGER OPERATORS I

被引:0
作者
Umeda, Tomio [1 ]
机构
[1] Univ Hyogo, Dept Math Sci, Himeji, Hyogo 6712201, Japan
基金
日本学术振兴会;
关键词
Relativistic Schrodinger operators; pseudo-relativistic Hamiltonians; generalized eigenfunctions; Riesz potentials; radiation conditions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalized eigenfunctions of the 3-dimensional relativistic Schrodinger operator root-Delta+V (x) with vertical bar V(x)vertical bar <= C (x)(-sigma), sigma > 1, are considered. We construct the generalized eigenfunctions by exploiting results on the limiting absorption principle. We compute explicitly the integral kernel of (root-Delta-z)(-1) , z is an element of C\[0,+infinity), which has nothing in common with the integral kernel of (-Delta-z)(-1), but the leading term of the integral kernels of the boundary values (root-Delta-lambda -/+ iO)(-1), lambda > 0, turn out to be the same, up to a constant, as the integral kernels of the boundary values (-Delta-lambda -/+ iO)(-1). This fact enables us to show that the asymptotic behavior, as vertical bar x vertical bar -> +infinity, of the generalized eigenfunction of root-Delta + V(x) is equal to the sum of a plane wave and a spherical wave when sigma > 3.
引用
收藏
页数:46
相关论文
共 33 条
[21]   BOUNDEDNESS OF THE MAXIMAL, POTENTIAL AND SINGULAR OPERATORS IN THE GENERALIZED VARIABLE EXPONENT MORREY SPACES [J].
Guliyev, Vagif S. ;
Hasanov, Javanshir J. ;
Samko, Stefan G. .
MATHEMATICA SCANDINAVICA, 2010, 107 (02) :285-304
[22]   Linear and sublinear operators on generalized Morrey spaces with non-doubling measures [J].
Guliyev, Vagif ;
Sawano, Yoshihiro .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (03) :303-327
[23]   GENERALIZED FRACTIONAL INTEGRAL OPERATORS ON VARIABLE EXPONENT MORREY SPACES OF AN INTEGRAL FORM [J].
Ohno, T. ;
Shimomura, T. .
ACTA MATHEMATICA HUNGARICA, 2022, 167 (01) :201-214
[24]   MAXIMAL AND SINGULAR INTEGRAL OPERATORS AND THEIR COMMUTATORS ON GENERALIZED WEIGHTED MORREY SPACES WITH VARIABLE EXPONENT [J].
Guliyev, Vagif S. ;
Hasanov, Javanshir J. ;
Badalov, Xayyam A. .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (01) :41-61
[25]   Generalized fractional integral operators over non-doubling metric measure spaces [J].
Sawano, Yoshihiro ;
Shimomura, Tetsu .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (07) :534-546
[26]   Generalized fractional integral operators on generalized Orlicz-Morrey spaces of the second kind over non-doubling metric measure spaces [J].
Sawano, Yoshihiro ;
Shimomura, Tetsu .
GEORGIAN MATHEMATICAL JOURNAL, 2018, 25 (02) :303-311
[27]   Lipschitz estimates for rough fractional multilinear integral operators on variable local generalized Morrey spaces [J].
Akbulut, A. ;
Ekincioglu, I. ;
Khaligova, S. Z. .
ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2023, 16 (02) :63-77
[28]   Initial Dirichlet Problem for Half-Plane Diffraction: Global Formulae for its Generalized Eigenfunctions, Explicit Solution by the Cagniard-de Hoop Method [J].
Meister, E. ;
Rottbrand, K. .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (02) :307-330
[29]   Generalized fractional integral operators on variable exponent Morrey type spaces over metric measure spaces [J].
Ohno, Takao ;
Shimomura, Tetsu .
PORTUGALIAE MATHEMATICA, 2022, 79 (3-4) :265-282
[30]   Generalized Riesz potential operators on Musielak-Orlicz-Morrey spaces over unbounded metric measure spaces [J].
Ohno, Takao ;
Shimomura, Tetsu .
ANALYSIS AND MATHEMATICAL PHYSICS, 2025, 15 (02)