Threshold heating temperature for magnetic hyperthermia: Controlling the heat exchange with the blocking temperature of magnetic nanoparticles

被引:31
作者
Pimentel, B. [1 ]
Caraballo-Vivas, R. J. [1 ]
Checca, N. R. [1 ]
Zverev, V. I. [2 ]
Salakhova, R. T. [2 ]
Makarova, L. A. [2 ]
Pyatakov, A. P. [2 ]
Perov, N. S. [2 ]
Tishin, A. M. [2 ,3 ]
Shtil, A. A. [4 ,5 ]
Rossi, A. L. [6 ]
Reiss, M. S. [1 ,7 ,8 ]
机构
[1] Fluminense Fed Univ, Phys Inst, Av Gal Milton Tavares Souza S-N, BR-24210346 Niteroi, RJ, Brazil
[2] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[3] Adv Magnet Technol & Consulting LLC, Troitsk 142190, Russia
[4] Moscow MV Lomonosov State Univ, Blokhin Natl Med Ctr Oncol, Moscow 119991, Russia
[5] Moscow MV Lomonosov State Univ, Fac Chem, Moscow 119991, Russia
[6] Brazilian Ctr Res Phys, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil
[7] Univ Aveiro, Phys Dept, P-3810 Aveiro, Portugal
[8] Univ Aveiro, I3N, P-3810 Aveiro, Portugal
关键词
Magnetic nanoparticles; Hyperthermia; Self-controlled inductive heating; Self-regulating magnetic hyperthermia; CANCER-THERAPY; PEROVSKITE NANOPARTICLES; FLUID; FIELD;
D O I
10.1016/j.jssc.2018.01.001
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
La0.75Sr0.25MnO3 nanoparticles with average diameter close to 20.9 nm were synthesized using a sol-gel method. Measurements showed that the heating process stops at the blocking temperaturesignificantly below the Curie temperature. Measurements of Specific Absorption Rate (SAR) as a function of AC magnetic field revealed a superquadratic power law, indicating that, in addition to usual Neel and Brown relaxation, the hysteresis also plays an important role in the mechanism of heating. The ability to control the threshold heating temperature, a low remanent magnetization and a low field needed to achieve the magnetic saturation are the advantages of this material for therapeutic magnetic hyperthermia.
引用
收藏
页码:34 / 38
页数:5
相关论文
共 35 条
[1]   Magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 tunable by particle size and dimensionality [J].
Andrade, V. M. ;
Vivas, R. J. Caraballo ;
Pedro, S. S. ;
Tedesco, J. C. G. ;
Rossi, A. L. ;
Coelho, A. A. ;
Rocco, D. L. ;
Reis, M. S. .
ACTA MATERIALIA, 2016, 102 :49-55
[2]   Magnetic and structural investigations on La0.6Sr0.4MnO3 nanostructured manganite: Evidence of a ferrimagnetic shell [J].
Andrade, V. M. ;
Caraballo-Vivas, R. J. ;
Costas-Soares, T. ;
Pedro, S. S. ;
Rocco, D. L. ;
Reis, M. S. ;
Campos, A. P. C. ;
Coelho, A. A. .
JOURNAL OF SOLID STATE CHEMISTRY, 2014, 219 :87-92
[3]  
Bertotti G., 1998, HYSTERESIS MAGNETISM
[4]   Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia [J].
Branquinho, Luis C. ;
Carriao, Marcus S. ;
Costa, Anderson S. ;
Zufelato, Nicholas ;
Sousa, Marcelo H. ;
Miotto, Ronei ;
Ivkov, Robert ;
Bakuzis, Andris F. .
SCIENTIFIC REPORTS, 2013, 3
[5]  
Brezovich I.A., 1988, Medical physics monograph, V16, P82
[6]   Nanoparticles in cancer therapy and diagnosis [J].
Brigger, I ;
Dubernet, C ;
Couvreur, P .
ADVANCED DRUG DELIVERY REVIEWS, 2002, 54 (05) :631-651
[7]   Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization [J].
Carrey, J. ;
Mehdaoui, B. ;
Respaud, M. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
[8]   CANCER THERAPY A twist on tumour targeting [J].
Dobson, Jon .
NATURE MATERIALS, 2010, 9 (02) :95-96
[9]   Tunable magnetic and magnetocaloric properties of La0.6Sr0.4MnO3 nanoparticles [J].
Ehsani, M. H. ;
Kameli, P. ;
Ghazi, M. E. ;
Razavi, F. S. ;
Taheri, M. .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (22)
[10]   Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: about the suitability of an aqueous combustion synthesis route [J].
Epherre, Romain ;
Duguet, Etienne ;
Mornet, Stephane ;
Pollert, Emil ;
Louguet, Stephanie ;
Lecommandoux, Sebastien ;
Schatz, Christophe ;
Goglio, Graziella .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (12) :4393-4401