A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data

被引:24
作者
Beilina, Larisa [1 ,2 ]
Klibanov, Michael V. [3 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, SE-42196 Gothenburg, Sweden
[2] Gothenburg Univ, SE-42196 Gothenburg, Sweden
[3] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2012年 / 20卷 / 04期
基金
瑞典研究理事会;
关键词
Coefficient inverse problems; approximate global convergence; new approximate mathematical model; convergence analysis; numerical studies; NUMERICAL-METHOD;
D O I
10.1515/jip-2012-0063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An approximately globally convergent numerical method for a 3d coefficient inverse problem for a hyperbolic equation with backscattering data is presented. A new approximate mathematical model is presented as well. An approximation is used only on the first iteration and amounts to the truncation of a certain asymptotic series. A significantly new element of the convergence analysis is that the so-called "tail functions" are estimated. Numerical results in 2d and 3d cases are discussed, including the one for a quite heterogeneous medium.
引用
收藏
页码:513 / 565
页数:53
相关论文
共 37 条
[1]   Solution of the three-dimensional acoustic inverse scattering problem. The modified Novikov algorithm [J].
Alekseenko, N. V. ;
Burov, V. A. ;
Rumyantseva, O. D. .
ACOUSTICAL PHYSICS, 2008, 54 (03) :407-419
[2]  
[Anonymous], 2000, MATH ITS APPL
[3]   A posteriori error estimates in a globally convergent FEM for a hyperbolic coefficient inverse problem [J].
Asadzadeh, M. ;
Beilina, L. .
INVERSE PROBLEMS, 2010, 26 (11)
[4]  
Bakushinskii A., 2004, Iterative Methods for Approximate Solutions of Inverse Problems
[5]  
Beilina L., 2001, GAKUTO INT SERIES MA
[6]  
Beilina L., CENT EUR J IN PRESS
[7]  
Beilina L., 2010, J MATH SCI, V167, P279, DOI DOI 10.1007/S10958-010-9921-1
[8]  
Beilina L., 2012, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, DOI DOI 10.1007/978-1-4419-7805-9
[9]   Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm [J].
Beilina, Larisa ;
Klibanov, Michael V. .
INVERSE PROBLEMS, 2010, 26 (12)
[10]   Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D [J].
Beilina, Larisa ;
Klibanov, Michael V. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2010, 18 (01) :85-132