Carleman estimate for Biot consolidation system in poro-elasticity and application to inverse problems

被引:7
作者
Bellassoued, Mourad [1 ]
Riahi, Bochra [1 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Dept Math, Jarzouna 7021, Bizerte, Tunisia
关键词
Carleman estimates; inverse problems; Biot system; STABILITY;
D O I
10.1002/mma.3914
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a coupled system of mixed hyperbolic-parabolic type, which describes the Biot consolidation model in poro-elasticity. We establish a local Carleman estimate for Biot consolidation system. Using this estimate, we prove the uniqueness and a Holder stability in determining on the one hand a physical parameter arising in connection with secondary consolidation effects and on the other hand the two spatially varying densities by a single measurement of solution over x (0,T), where T > 0 is a sufficiently large time and a suitable subdomain satisfying . Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:5281 / 5301
页数:21
相关论文
共 29 条
[1]  
[Anonymous], 2008, APPL MATH
[2]  
[Anonymous], 2004, INVER ILL POSED PROB, DOI 10.1515/9783110915549
[3]  
Barucq H., 2004, Monografias del Seminario Matematico Garcia de Galdeano, V31, P449
[4]   Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation [J].
Bellassoued, M ;
Yamamoto, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 85 (02) :193-224
[5]   Carleman estimate and inverse source problem for Biot's equations describing wave propagation in porous media [J].
Bellassoued, Mourad ;
Yamamoto, Masahiro .
INVERSE PROBLEMS, 2013, 29 (11)
[6]   Carleman estimate with second large parameter for second order hyperbolic operators in a Riemannian manifold and applications in thermoelasticity cases [J].
Bellassoued, Mourad ;
Yamamoto, Masahiro .
APPLICABLE ANALYSIS, 2012, 91 (01) :35-67
[7]   Carleman estimates and an inverse heat source problem for the thermoelasticity system [J].
Bellassoued, Mourad ;
Yamamoto, Masahiro .
INVERSE PROBLEMS, 2011, 27 (01)
[8]  
Biot, 1935, ANN SOC SCI BRUXEL B, P110
[9]   THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID [J].
BIOT, MA .
JOURNAL OF APPLIED PHYSICS, 1955, 26 (02) :182-185