Catalytic steam reforming of biomass-derived tar for hydrogen production with K2CO3/NiO/γ-Al2O3 catalyst

被引:34
作者
Kuchonthara, Prapan [1 ]
Puttasawat, Buppha [1 ]
Piumsomboon, Pornpote [1 ]
Mekasut, Lursuang [1 ]
Vitidsant, Tharapong [1 ]
机构
[1] Chulalongkorn Univ, Dept Chem Technol, Ctr Excellence Petr Petrochem & Adv Mat, Fuels Res Ctr,Fac Sci, Bangkok 10330, Thailand
关键词
Biomass Gasification; Tar Reforming; Alkali Metal; Ni-catalyst; K2CO3; FLUIDIZED-BED; MODEL-COMPOUND; RICH GAS; OPERATING-CONDITIONS; GASIFICATION GAS; REMOVAL CATALYST; HOT GAS; NAPHTHALENE; DOLOMITE; AIR;
D O I
10.1007/s11814-012-0027-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A major problem of using Ni-based catalysts is deactivation during catalytic cracking and reforming, lowering catalytic performance of the catalysts. Modification of catalyst with alkali-loading was expected to help reduce coke formation, which is a cause of the deactivation. This paper investigated the effects of alkali-loading to aluminasupported Ni catalyst on catalytic performance in steam reforming of biomass-derived tar. Rice husk and K2CO3 were employed as the biomass feedstock and the alkali, respectively. The catalysts were prepared by a wet impregnation method with gamma-Al2O3 as a support. A drop-tube fixed bed reactor was used to produce tar from biomass in a pyrolysis zone incorporated with a steam reforming zone. The result indicated that K2CO3/NiO/gamma-Al2O3 is more efficient for steam reforming of tar released from rice husk than NiO/gamma-Al2O3 in terms of carbon conversion and particularly hydrogen production. Effects of reaction temperature and steam concentration were examined. The optimum temperature was found to be approximately 1,073 K. An increase in steam concentration contributed to more tar reduction. In addition, the K2CO3-promoted NiO/gamma-Al2O3 was found to have superior stability due to lower catalyst deactivation.
引用
收藏
页码:1525 / 1530
页数:6
相关论文
共 30 条
[1]   Review of catalysts for tar elimination in Biomass gasification processes [J].
Abu El-Rub, Z ;
Bramer, EA ;
Brem, G .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (22) :6911-6919
[2]   Catalytic pyrogasification of biomass. Evaluation of modified nickel catalysts [J].
Arauzo, J ;
Radlein, D ;
Piskorz, J ;
Scott, DS .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1997, 36 (01) :67-75
[3]   Catalytic pyrolysis of biomass for hydrogen rich fuel gas production [J].
Chen, G ;
Andries, J ;
Spliethoff, H .
ENERGY CONVERSION AND MANAGEMENT, 2003, 44 (14) :2289-2296
[4]   Steam reforming model compounds of biomass gasification tars:: conversion at different operating conditions and tendency towards coke formation [J].
Coll, R ;
Salvadó, J ;
Farriol, X ;
Montané, D .
FUEL PROCESSING TECHNOLOGY, 2001, 74 (01) :19-31
[5]   Biomass gasification with air in fluidized bed:: Reforming of the gas composition with commercial steam reforming catalysts [J].
Corella, J ;
Orío, A ;
Aznar, P .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1998, 37 (12) :4617-4624
[6]   Improving the modeling of the kinetics of the catalytic tar elimination in biomass gasification [J].
Corella, J ;
Toledo, JM ;
Aznar, MP .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (14) :3351-3356
[7]   Calcined dolomite, magnesite, and calcite for cleaning hot gas from a fluidized bed biomass gasifier with steam: Life and usefulness [J].
Delgado, J ;
Aznar, MP ;
Corella, J .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1996, 35 (10) :3637-3643
[8]   Olivine as tar removal catalyst for biomass gasifiers:: Catalyst characterization [J].
Devi, L ;
Craje, M ;
Thüne, P ;
Ptasinski, KJ ;
Janssen, FJJG .
APPLIED CATALYSIS A-GENERAL, 2005, 294 (01) :68-79
[9]   Pretreated olivine as tar removal catalyst for biomass gasifiers: investigation using naphthalene as model biomass tar [J].
Devi, L ;
Ptasinski, KJ ;
Janssen, FJJG .
FUEL PROCESSING TECHNOLOGY, 2005, 86 (06) :707-730
[10]   The study of reactions influencing the biomass steam gasification process [J].
Franco, C ;
Pinto, F ;
Gulyurtlu, I ;
Cabrita, I .
FUEL, 2003, 82 (07) :835-842