Optimal Stretching in Advection-Reaction-Diffusion Systems

被引:14
作者
Nevins, Thomas D. [1 ]
Kelley, Douglas H. [2 ]
机构
[1] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[2] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
关键词
LAGRANGIAN COHERENT STRUCTURES; PARTICLE TRACKING; FRONTS; SCALE; FLOWS; MEDIA;
D O I
10.1103/PhysRevLett.117.164502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate growth of the excitable Belousov-Zhabotinsky reaction in chaotic, time-varying flows. In slow flows, reacted regions tend to lie near vortex edges, whereas fast flows restrict reacted regions to vortex cores. We show that reacted regions travel toward vortex centers faster as flow speed increases, but nonreactive scalars do not. For either slow or fast flows, reaction is promoted by the same optimal range of the local advective stretching, but stronger stretching causes reaction blowout and can hinder reaction from spreading. We hypothesize that optimal stretching and blowout occur in many advection-diffusion-reaction systems, perhaps creating ecological niches for phytoplankton in the ocean.
引用
收藏
页数:5
相关论文
共 50 条
[41]   Controlling the Position of Traveling Waves in Reaction-Diffusion Systems [J].
Loeber, Jakob ;
Engel, Harald .
PHYSICAL REVIEW LETTERS, 2014, 112 (14)
[42]   The diffusing-velocity random walk: a spatial-Markov formulation of heterogeneous advection and diffusion [J].
Aquino, Tomas ;
Le Borgne, Tanguy .
JOURNAL OF FLUID MECHANICS, 2021, 910
[43]   Optimal stretching in the reacting wake of a bluff body [J].
Wang, Jinge ;
Tithof, Jeffrey ;
Nevins, Thomas D. ;
Colon, Rony O. ;
Kelley, Douglas H. .
CHAOS, 2017, 27 (12)
[44]   Time dependence of advection-diffusion coupling for nanoparticle ensembles [J].
Vilquin, Alexandre ;
Bertin, Vincent ;
Soulard, Pierre ;
Guyard, Gabriel ;
Raphael, Elie ;
Restagno, Frederic ;
Salez, Thomas ;
McGraw, Joshua D. .
PHYSICAL REVIEW FLUIDS, 2021, 6 (06)
[45]   STABILITY OF TRAVELING WAVES FOR A CLASS OF REACTION-DIFFUSION SYSTEMS THAT ARISE IN CHEMICAL REACTION MODELS [J].
Ghazaryan, Anna ;
Latushkin, Yuri ;
Schecter, Stephen .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (06) :2434-2472
[46]   Discontinuous Galerkin methods for magnetic advection-diffusion problems [J].
Wang, Jindong ;
Wu, Shuonan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 174 :43-54
[47]   Single-relaxation-time lattice Boltzmann scheme for advection-diffusion problems with large diffusion-coefficient heterogeneities and high-advection transport [J].
Perko, Janez ;
Patel, Ravi A. .
PHYSICAL REVIEW E, 2014, 89 (05)
[48]   Wavespeed in reaction-diffusion systems, with applications to chemotaxis and population pressure [J].
Balasuriya, Sanjeeva ;
Gottwald, Georg A. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2010, 61 (03) :377-399
[49]   TRAVELING WAVE SOLUTIONS FOR TIME PERIODIC REACTION-DIFFUSION SYSTEMS [J].
Bo, Wei-Jian ;
Lin, Guo ;
Ruan, Shigui .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (09) :4329-4351
[50]   Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities [J].
Leung, Anthony W. ;
Hou, Xiaojie ;
Li, Yi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :902-924