Optimal Stretching in Advection-Reaction-Diffusion Systems

被引:14
作者
Nevins, Thomas D. [1 ]
Kelley, Douglas H. [2 ]
机构
[1] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[2] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
关键词
LAGRANGIAN COHERENT STRUCTURES; PARTICLE TRACKING; FRONTS; SCALE; FLOWS; MEDIA;
D O I
10.1103/PhysRevLett.117.164502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate growth of the excitable Belousov-Zhabotinsky reaction in chaotic, time-varying flows. In slow flows, reacted regions tend to lie near vortex edges, whereas fast flows restrict reacted regions to vortex cores. We show that reacted regions travel toward vortex centers faster as flow speed increases, but nonreactive scalars do not. For either slow or fast flows, reaction is promoted by the same optimal range of the local advective stretching, but stronger stretching causes reaction blowout and can hinder reaction from spreading. We hypothesize that optimal stretching and blowout occur in many advection-diffusion-reaction systems, perhaps creating ecological niches for phytoplankton in the ocean.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Traveling wave solutions for reaction-diffusion systems
    Lin, Zhigui
    Pedersen, Michael
    Tian, Canrong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) : 3303 - 3313
  • [32] The existence and non-existence of traveling waves of scalar reaction-diffusion-advection equation in unbounded cylinder
    Meng, Haixia
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (11) : 1644 - 1652
  • [33] Noise induced patterning in reaction-diffusion systems with non-Fickian diffusion
    Kharchenko, D. O.
    Kokhan, S. V.
    Dvornichenko, A. V.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (23-24) : 2251 - 2260
  • [34] An Advection-Reaction Model for Flow Visualization
    Acar, Rueyam
    IEEE PACIFIC VISUALIZATION SYMPOSIUM 2010, 2010, : 137 - 144
  • [35] Super-diffusion versus competitive advection: a simulation
    Del Moro, D.
    Giannattasio, F.
    Berrilli, F.
    Consolini, G.
    Lepreti, F.
    Gosic, M.
    ASTRONOMY & ASTROPHYSICS, 2015, 576
  • [36] Stability of Traveling Waves for Degenerate Systems of Reaction Diffusion Equations
    Ghazaryan, Anna
    Latushkin, Yuri
    Schecter, Stephen
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (02) : 443 - 471
  • [37] Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems
    Krause, Andrew L.
    Klika, Vaclav
    Woolley, Thomas E.
    Gaffney, Eamonn A.
    PHYSICAL REVIEW E, 2018, 97 (05)
  • [38] STABILITY OF A PLANAR FRONT IN A CLASS OF REACTION-DIFFUSION SYSTEMS
    Ghazaryan, A.
    Latushkin, Y.
    Yang, X.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) : 5569 - 5615
  • [39] Traveling waves of delayed reaction-diffusion systems with applications
    Yu, Zhi-Xian
    Yuan, Rong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) : 2475 - 2488
  • [40] Gradient structures and geodesic convexity for reaction-diffusion systems
    Liero, Matthias
    Mielke, Alexander
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (2005):