Optimal Stretching in Advection-Reaction-Diffusion Systems

被引:14
|
作者
Nevins, Thomas D. [1 ]
Kelley, Douglas H. [2 ]
机构
[1] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[2] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
关键词
LAGRANGIAN COHERENT STRUCTURES; PARTICLE TRACKING; FRONTS; SCALE; FLOWS; MEDIA;
D O I
10.1103/PhysRevLett.117.164502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate growth of the excitable Belousov-Zhabotinsky reaction in chaotic, time-varying flows. In slow flows, reacted regions tend to lie near vortex edges, whereas fast flows restrict reacted regions to vortex cores. We show that reacted regions travel toward vortex centers faster as flow speed increases, but nonreactive scalars do not. For either slow or fast flows, reaction is promoted by the same optimal range of the local advective stretching, but stronger stretching causes reaction blowout and can hinder reaction from spreading. We hypothesize that optimal stretching and blowout occur in many advection-diffusion-reaction systems, perhaps creating ecological niches for phytoplankton in the ocean.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Bilinear Optimal Control of an Advection-Reaction-Diffusion System
    Glowinski, Roland
    Song, Yongcun
    Yuan, Xiaoming
    Yue, Hangrui
    SIAM REVIEW, 2022, 64 (02) : 392 - 421
  • [2] On control problems for some advection-reaction-diffusion systems
    Glowinski, R
    He, JW
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 3717 - 3722
  • [3] Equivalence Transformations for a Class of Advection-Reaction-Diffusion Systems
    Tracina, Rita
    Torrisi, Mariano
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [4] Study of front instability in advection-reaction-diffusion systems
    Affan, Hira
    Friedrich, Rudolf
    Rehman, Ayesha
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2017, 31 (27):
  • [5] Front tracking velocimetry in advection-reaction-diffusion systems
    Nevins, Thomas D.
    Kelley, Douglas H.
    CHAOS, 2018, 28 (04)
  • [6] Novel numerical analysis for nonlinear advection-reaction-diffusion systems
    Shahid, Naveed
    Ahmed, Nauman
    Baleanu, Dumitru
    Alshomrani, Ali Saleh
    Iqbal, Muhammad Sajid
    Rehman, Muhammad Aziz-ur
    Shaikh, Tahira Sumbal
    Malik, Muhammad Rafiq
    OPEN PHYSICS, 2020, 18 (01): : 112 - 125
  • [7] A modified backward Euler scheme for advection-reaction-diffusion systems
    Madzvamuse, Anotida
    MATHEMATICAL MODELING OF BIOLOGICAL SYSTEMS, VOL I: CELLULAR BIOPHYSICS, REGULATORY NETWORKS, DEVELOPMENT, BIOMEDICINE, AND DATA ANALYSIS, 2007, : 183 - 189
  • [8] CANARDS IN ADVECTION-REACTION-DIFFUSION SYSTEMS IN ONE SPATIAL DIMENSION
    Harley, Kristen
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 92 (02) : 342 - 343
  • [9] Front tracking for quantifying advection-reaction-diffusion
    Nevins, Thomas D.
    Kelley, Douglas H.
    CHAOS, 2017, 27 (04)
  • [10] A peridynamic model for advection-reaction-diffusion problems
    Tian, Chenwen
    Fan, Shuaiqi
    Du, Juan
    Zhou, Zhikun
    Chen, Ziguang
    Bobaru, Florin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 415