Quantum key agreement protocols with four-qubit cluster states

被引:99
作者
He, Ye-Feng [1 ]
Ma, Wen-Ping [2 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Telecommun & Informat Engn, Xian 710121, Peoples R China
[2] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum cryptography; Quantum key agreement; Cluster state; Delayed measurement; BELL STATES; COMMUNICATION; CRYPTOGRAPHY;
D O I
10.1007/s11128-015-1060-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on unitary operations and four-qubit cluster states, a two-party and a three-party quantum key agreement protocols are proposed, respectively, in this paper. The two-party protocol allows that each participant contributes equally to the agreement key by one party performing the unitary operations on two photons of a cluster state and another party performing the delayed measurement on the transformed cluster state. In the three-party scheme, each party can extract the other two parties' secret keys, respectively, encoded in the different photons of the same cluster state by performing the measurement with cluster basis and fairly generates the shared key. The security analysis shows that the two protocols can resist against both participant and outsider attacks. Furthermore, the two protocols also achieve high qubit efficiency.
引用
收藏
页码:3483 / 3498
页数:16
相关论文
共 39 条
[1]  
[Anonymous], 2009, Technical Report
[2]  
[Anonymous], 1984, P IEEE INT C COMP, DOI DOI 10.1016/J.TCS.2014.05.025
[3]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[4]   Single photon quantum cryptography [J].
Beveratos, A ;
Brouri, R ;
Gacoin, T ;
Villing, A ;
Poizat, JP ;
Grangier, P .
PHYSICAL REVIEW LETTERS, 2002, 89 (18) :1-187901
[5]   Deterministic secure direct communication using entanglement -: art. no. 187902 [J].
Boström, K ;
Felbinger, T .
PHYSICAL REVIEW LETTERS, 2002, 89 (18) :187902/1-187902/4
[6]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[7]   Quantum key distribution in the Holevo limit [J].
Cabello, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (26) :5635-5638
[8]   Eavesdropping on the two-way quantum communication protocols with invisible photons [J].
Cai, QY .
PHYSICS LETTERS A, 2006, 351 (1-2) :23-25
[9]   Improvement on "Quantum Key Agreement Protocol with Maximally Entangled States" [J].
Chong, Song-Kong ;
Tsai, Chia-Wei ;
Hwang, Tzonelih .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (06) :1793-1802
[10]   Quantum key agreement protocol based on BB84 [J].
Chong, Song-Kong ;
Hwang, Tzonelih .
OPTICS COMMUNICATIONS, 2010, 283 (06) :1192-1195